分析 (Ⅰ)求出圓M和圓N的圓心及半徑,設(shè)圓P的圓心為P(x,y),半徑為R.由圓P與圓M外切并與圓N內(nèi)切,得到曲線(xiàn)C是以M,N為左右焦點(diǎn),長(zhǎng)半軸長(zhǎng)為2,短半軸為√3的橢圓(左頂點(diǎn)除外),由此能求出C的方程.
(Ⅱ)假設(shè)存在T(t,0)滿(mǎn)足∠OTS=∠OTR.聯(lián)立{y=k(x−1)3x2+4y2−12=0得(3+4k2)x2-8k2x+4k2-12=0,由此利用根的判別式、韋達(dá)定理,結(jié)合已知條件能求出存在T(4,0),使得當(dāng)k變化時(shí),總有∠OTS=∠OTR.
解答 解:(Ⅰ)圓M:(x+1)2+y2=1的圓心為M(-1,0),半徑r1=1,
圓N的圓心N(1,0),半徑r2=3.
設(shè)圓P的圓心為P(x,y),半徑為R.
∵圓P與圓M外切并與圓N內(nèi)切,
∴|PM|+|PN|=R+r1+r2-R=r1+r2=4.…(3分)
由橢圓的定義可知,曲線(xiàn)C是以M,N為左右焦點(diǎn),長(zhǎng)半軸長(zhǎng)為2,短半軸為√3的橢圓(左頂點(diǎn)除外),
∴C的方程為x24+y23=1(x≠−2).…(5分)
(Ⅱ)假設(shè)存在T(t,0)滿(mǎn)足∠OTS=∠OTR.設(shè)R(x1,y1),S(x2,y2)
聯(lián)立{y=k(x−1)3x2+4y2−12=0得(3+4k2)x2-8k2x+4k2-12=0,
由韋達(dá)定理有{x1+x2=8k23+4k2x1x2=4k2−123+4k2①,其中△>0恒成立,…(7分)
由∠OTS=∠OTR(由題意TS,TR的斜率存在),
故kTS+kTR=0,即y1x1−t+y2x2−t=0②,
由R,S兩點(diǎn)在直線(xiàn)y=k(x-1)上,故 y1=k(x1-1),y2=k(x2-1),
代入②得k(x1−1)(x2−t)+k(x2−1)(x1−t)(x1−t)(x2−t)=k[2x1x2−(t+1)(x1+x2)+2t](x1−t)(x2−t)=0,
即有2x1x2-(t+1)(x1+x2)+2t=0③…(9分)
將①代入③即有:8k2−24−(t+1)8k2+2t(3+4k2)3+4k2=6t−243+4k2=0④,
要使得④與k的取值無(wú)關(guān),當(dāng)且僅當(dāng)“t=4“時(shí)成立,
綜上所述存在T(4,0),使得當(dāng)k變化時(shí),總有∠OTS=∠OTR.…(12分)
點(diǎn)評(píng) 本題考查曲線(xiàn)方的求法,考查滿(mǎn)足條件的點(diǎn)是否存在的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓定義、根的判別式、韋達(dá)定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | \frac{1}{2} | B. | 1 | C. | \frac{\sqrt{3}}{2} | D. | \sqrt{3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0,0) | B. | (5,0,0) | C. | (1,0,0) | D. | (5,0,0)和(1,0,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±1 | B. | ±\frac{\sqrt{3}}{2} | C. | ±\frac{\sqrt{2}}{2} | D. | ±\frac{1}{2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | \frac{4}{3} | B. | \frac{3}{4} | C. | \frac{8}{3} | D. | \frac{4}{5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | \frac{9}{16}π | B. | \frac{25}{16}π | C. | \frac{49}{16}π | D. | \frac{81}{16}π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com