(本小題滿(mǎn)分13分)

已知雙曲線(xiàn)G的中心在原點(diǎn),它的漸近線(xiàn)與圓x2y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線(xiàn)l,使得lG交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線(xiàn)段AB上,又滿(mǎn)足|PA|·|PB|=|PC|2.

(1)求雙曲線(xiàn)G的漸近線(xiàn)的方程;

(2)求雙曲線(xiàn)G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線(xiàn)截在S內(nèi)的部分,求橢圓S的方程.

解:(1)設(shè)雙曲線(xiàn)G的漸近線(xiàn)的方程為ykx

則由漸近線(xiàn)與圓x2y2-10x+20=0相切可得,

所以k=±,即雙曲線(xiàn)G的漸近線(xiàn)的方程為y=±x.(3分)

(2)由(1)可設(shè)雙曲線(xiàn)G的方程為x2-4y2m,

把直線(xiàn)l的方程y(x+4)代入雙曲線(xiàn)方程,

整理得3x2-8x-16-4m=0,

xAxB,xAxB=-.(*)

∵|PA|·|PB|=|PC|2,PA、BC共線(xiàn)且P在線(xiàn)段AB上,

∴(xPxA)(xBxP)=(xPxC)2,即(xB+4)(-4-xA)=16,

整理得4(xAxB)+xAxB+32=0.

將(*)代入上式得m=28,

∴雙曲線(xiàn)的方程為=1.(8分)

(3)由題可設(shè)橢圓S的方程為=1(a>2),

設(shè)垂直于l的平行弦的兩端點(diǎn)分別為M(x1,y1),N(x2,y2),MN的中點(diǎn)為P(x0y0),

=1,=1,

兩式作差得=0.

由于=-4,x1x2=2x0,y1y2=2y0

所以=0,

所以,垂直于l的平行弦中點(diǎn)的軌跡為直線(xiàn)=0截在橢圓S內(nèi)的部分.

又由已知,這個(gè)軌跡恰好是G的漸近線(xiàn)截在S內(nèi)的部分,所以,即a2=56,

故橢圓S的方程為=1.(13分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿(mǎn)分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線(xiàn)所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案