(本小題滿(mǎn)分13分)
已知雙曲線(xiàn)G的中心在原點(diǎn),它的漸近線(xiàn)與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線(xiàn)l,使得l和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線(xiàn)段AB上,又滿(mǎn)足|PA|·|PB|=|PC|2.
(1)求雙曲線(xiàn)G的漸近線(xiàn)的方程;
(2)求雙曲線(xiàn)G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線(xiàn)截在S內(nèi)的部分,求橢圓S的方程.
解:(1)設(shè)雙曲線(xiàn)G的漸近線(xiàn)的方程為y=kx,
則由漸近線(xiàn)與圓x2+y2-10x+20=0相切可得=,
所以k=±,即雙曲線(xiàn)G的漸近線(xiàn)的方程為y=±x.(3分)
(2)由(1)可設(shè)雙曲線(xiàn)G的方程為x2-4y2=m,
把直線(xiàn)l的方程y=(x+4)代入雙曲線(xiàn)方程,
整理得3x2-8x-16-4m=0,
則xA+xB=,xAxB=-.(*)
∵|PA|·|PB|=|PC|2,P、A、B、C共線(xiàn)且P在線(xiàn)段AB上,
∴(xP-xA)(xB-xP)=(xP-xC)2,即(xB+4)(-4-xA)=16,
整理得4(xA+xB)+xAxB+32=0.
將(*)代入上式得m=28,
∴雙曲線(xiàn)的方程為-=1.(8分)
(3)由題可設(shè)橢圓S的方程為+=1(a>2),
設(shè)垂直于l的平行弦的兩端點(diǎn)分別為M(x1,y1),N(x2,y2),MN的中點(diǎn)為P(x0,y0),
則+=1,+=1,
兩式作差得+=0.
由于=-4,x1+x2=2x0,y1+y2=2y0,
所以-=0,
所以,垂直于l的平行弦中點(diǎn)的軌跡為直線(xiàn)-=0截在橢圓S內(nèi)的部分.
又由已知,這個(gè)軌跡恰好是G的漸近線(xiàn)截在S內(nèi)的部分,所以=,即a2=56,
故橢圓S的方程為+=1.(13分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿(mǎn)分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線(xiàn)與所成的角。www.7caiedu.cn
[來(lái)源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com