【題目】如圖,在三棱錐平面,已知,點(diǎn),分別為的中點(diǎn).

(1)求證:平面;

(2)在線段上,滿足平面,求的值.

【答案】(1)證明見詳解;(2)

【解析】

1)通過(guò)證明ADPB,ADBC,即可證明AD平面PBC;

2)通過(guò)構(gòu)造面面平行,從而推出線線平行,再利用三角形相似求解.

1)證明:因?yàn)?/span>BC平面PAB,AD平面PAB,故:

BCAD;①

為等腰三角形,且DPB中點(diǎn),故:

PBAD;②

BC平面PBCPB平面PBC,,結(jié)合①②,故:

AD平面PBC,即證.

2)取BE中點(diǎn)為M,連接DMAM,作圖如下:

中,因?yàn)?/span>D、M分別為PB、BE中點(diǎn),故:

DM//PE,又PE平面PEF,DM平面PEF,故:

DM//平面PEF,由已知得:AD//平面PEF,且

DM平面ADM,AD平面ADM,故:

平面ADM//平面PEF;

又平面平面ADM,

平面ABC平面PEF,

故:AM//EF,則,

因?yàn)椋?/span>,故.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某沿海地區(qū)的海岸線為一段圓弧,對(duì)應(yīng)的圓心角,該地區(qū)為打擊走私,在海岸線外側(cè)海里內(nèi)的海域對(duì)不明船只進(jìn)行識(shí)別查證(如圖:其中海域與陸地近似看作在同一平面內(nèi)),在圓弧的兩端點(diǎn)分別建有監(jiān)測(cè)站,之間的直線距離為海里.

1)求海域的面積;

2)現(xiàn)海上點(diǎn)處有一艘不明船只,在點(diǎn)測(cè)得其距點(diǎn)海里,在點(diǎn)測(cè)得其距點(diǎn)海里.判斷這艘不明船只是否進(jìn)入了海域?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知樣本

10.1

8.7

6.4

10.5

13.0

8.3

10.0

12.4

8.0

9.0

11.2

9.3

12.7

9.6

10.6

11.0

那么其分位數(shù)和分位數(shù)分別是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足,

1)設(shè),證明是等差數(shù)列;

2)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正項(xiàng)數(shù)列的前項(xiàng)和為,且.

)試求數(shù)列的通項(xiàng)公式;

)設(shè),求的前項(xiàng)和為.

)在()的條件下,若對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)圍建一個(gè)面積為的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用的舊墻需維修,可供利用的舊墻足夠長(zhǎng)),其他三面圍墻要新建,在舊墻對(duì)面的新墻上要留一個(gè)寬的進(jìn)出口,如圖2所示.已知舊墻的維修費(fèi)用為,新墻的造價(jià)為.設(shè)利用舊墻的長(zhǎng)度為(單位:),修建此矩形場(chǎng)地圍墻的總費(fèi)用為(單位:元).

1)將表示為的函數(shù),并寫出此函數(shù)的定義域;

2)若要求用于維修舊墻的費(fèi)用不得超過(guò)修建此矩形場(chǎng)地圍墻的總費(fèi)用的15%,試確定,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為正整數(shù),

1)證明:當(dāng)時(shí),;

2)對(duì)于,已知,求證:,;

3)求出滿足等式的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),求函數(shù)上的值域;

(2)若函數(shù)上的最小值為3,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求的值;

2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

3)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案