如圖,四棱錐P-ABCD中,,,和都是等邊三角形.
(Ⅰ)證明:;
(Ⅱ)求二面角A-PD-C的大小.
(Ⅰ)見解析(Ⅱ)
【解析】(Ⅰ)證明:取BC的中點(diǎn)E,連結(jié)DE,則ABED為正方形.
過P作PO⊥平面ABCD,垂足為O.
連結(jié)OA,OB,OD,OE.
由和都是等邊三角形知PA=PB=PD,
所以O(shè)A=OB=OD,即點(diǎn)O為正方形ABED對(duì)角線的交點(diǎn),
故,
從而. 3分
因?yàn)镺是BD的中點(diǎn),E是BC的中點(diǎn),所以O(shè)E//CD.因此. 5分
(Ⅱ)解法一:
由(Ⅰ)知,,.
故平面PBD.
又平面PBD,所以.
取PD的中點(diǎn)F,PC的中點(diǎn)G,連結(jié)FG,
則FG//CD,F(xiàn)G//PD.
連結(jié)AF,由為等邊三角形可得AF⊥PD.
所以為二面角A-PD-C的平面角. 8分
連結(jié)AG,EG,則EG//PB.
又PB⊥AE,所以EG⊥AE.
設(shè)AB=2,則,,
故.
在中,,,,
所以.
因此二面角A-PD-C的大小為. 12分
解法二:
由(Ⅰ)知,OE,OB,OP兩兩垂直.
以O(shè)為坐標(biāo)原點(diǎn),的方向?yàn)閤軸的正方向建立如圖所示的空間直角坐標(biāo)系O-xyz.
設(shè),則
,,,.
,.
,.
設(shè)平面PCD的法向量為,則
,
,
可得,.
取,得,故. 8分
設(shè)平面PAD的法向量為,則
,
,
可得.
取m=1,得,故.
于是.
由于等于二面角A-PD-C的平面角,
所以二面角A-PD-C的大小為. 12分
(1)解題的關(guān)鍵是輔助線的添加,取BC的中點(diǎn)E是入手點(diǎn),然后借助三垂線定理進(jìn)行證明;(2)利用三垂線定理法或者空間向量法求解二面角. 求二面角:關(guān)鍵是作出或找出其平面角,常用做法是利用三垂線定理定角法,先找到一個(gè)半平面的垂線,然后過垂足作二面角棱的垂線,再連接第三邊,即可得到平面角。若考慮用向量來求:要求出二個(gè)面的法向量,然后轉(zhuǎn)化為,要注意兩個(gè)法向量的夾角與二面角可能相等也可能互補(bǔ),要從圖上判斷一下二面角是銳二面角還是鈍二面角,然后根據(jù)余弦值確定相等或互補(bǔ)即可。
【考點(diǎn)定位】本題考查線線垂直的證明和二面角的求解,考查學(xué)生的空間想象能力和計(jì)算能力。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
AE |
AP |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com