如圖,四棱錐P-ABCD中,都是等邊三角形.

(Ⅰ)證明:

(Ⅱ)求二面角A-PD-C的大小.

 

【答案】

(Ⅰ)見解析(Ⅱ)

【解析】(Ⅰ)證明:取BC的中點(diǎn)E,連結(jié)DE,則ABED為正方形.

過P作PO⊥平面ABCD,垂足為O.

連結(jié)OA,OB,OD,OE.

都是等邊三角形知PA=PB=PD,

所以O(shè)A=OB=OD,即點(diǎn)O為正方形ABED對(duì)角線的交點(diǎn),

,

從而.           3分

因?yàn)镺是BD的中點(diǎn),E是BC的中點(diǎn),所以O(shè)E//CD.因此.  5分

(Ⅱ)解法一:

由(Ⅰ)知,.

平面PBD.

平面PBD,所以.

取PD的中點(diǎn)F,PC的中點(diǎn)G,連結(jié)FG,

則FG//CD,F(xiàn)G//PD.

連結(jié)AF,由為等邊三角形可得AF⊥PD.

所以為二面角A-PD-C的平面角.         8分

連結(jié)AG,EG,則EG//PB.

又PB⊥AE,所以EG⊥AE.

設(shè)AB=2,則,

.

中,,,,

所以.

因此二面角A-PD-C的大小為.      12分

解法二:

由(Ⅰ)知,OE,OB,OP兩兩垂直.

以O(shè)為坐標(biāo)原點(diǎn),的方向?yàn)閤軸的正方向建立如圖所示的空間直角坐標(biāo)系O-xyz.

設(shè),則

,.

.

,.

設(shè)平面PCD的法向量為,則

,

,

可得,.

,得,故.      8分

設(shè)平面PAD的法向量為,則

,

可得.

取m=1,得,故.

于是.

由于等于二面角A-PD-C的平面角,

所以二面角A-PD-C的大小為.     12分

(1)解題的關(guān)鍵是輔助線的添加,取BC的中點(diǎn)E是入手點(diǎn),然后借助三垂線定理進(jìn)行證明;(2)利用三垂線定理法或者空間向量法求解二面角. 求二面角:關(guān)鍵是作出或找出其平面角,常用做法是利用三垂線定理定角法,先找到一個(gè)半平面的垂線,然后過垂足作二面角棱的垂線,再連接第三邊,即可得到平面角。若考慮用向量來求:要求出二個(gè)面的法向量,然后轉(zhuǎn)化為,要注意兩個(gè)法向量的夾角與二面角可能相等也可能互補(bǔ),要從圖上判斷一下二面角是銳二面角還是鈍二面角,然后根據(jù)余弦值確定相等或互補(bǔ)即可。

【考點(diǎn)定位】本題考查線線垂直的證明和二面角的求解,考查學(xué)生的空間想象能力和計(jì)算能力。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大。划(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案