觀察下列各式:①(x3)′=3x2;②(sinx)′=cosx;③(2x-2-x)′=2x+2-x;④(xcosx)′=cosx-xsinx根據(jù)其中函數(shù)f(x)及其導(dǎo)函數(shù)f′(x)的奇偶性,運(yùn)用歸納推理可得到的一個(gè)命題是: .
【答案】分析:根據(jù)已知題目中四個(gè)函數(shù)的奇偶性和其導(dǎo)函數(shù)奇偶性的關(guān)系,我們分析其規(guī)律,歸納后即可得到結(jié)論.
解答:解:①中,原函數(shù)為奇函數(shù),導(dǎo)函數(shù)為偶函數(shù);
②中,原函數(shù)為奇函數(shù),導(dǎo)函數(shù)為偶函數(shù);
③中,原函數(shù)為奇函數(shù),導(dǎo)函數(shù)為偶函數(shù);
④中,原函數(shù)為奇函數(shù),導(dǎo)函數(shù)為偶函數(shù);
…
由此我們可以推斷:奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)
故答案為:奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)
點(diǎn)評(píng):歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).