若正方形的四個(gè)頂點(diǎn)均在y=-4x3+3x的圖象上,則這樣的正方形有
 
個(gè).
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:顯然該函數(shù)是奇函數(shù),由圖象分析可知,正方形的中心應(yīng)過(guò)原點(diǎn),且兩對(duì)角線也過(guò)原點(diǎn)且分別關(guān)于原點(diǎn)對(duì)稱、相互垂直,據(jù)此可設(shè)兩對(duì)角線所在直線方程為y=kx,及y=-
1
k
x
,分別與函數(shù)y=-4x3+3x聯(lián)立,求出交點(diǎn)坐標(biāo),利用兩對(duì)角線長(zhǎng)度相等列出關(guān)于k的方程,判斷根的個(gè)數(shù)即可.
解答: 解:∵正方形的四個(gè)頂點(diǎn)均在y=-4x3+3x的圖象上,且該函數(shù)是奇函數(shù),
所以正方形的中心過(guò)原點(diǎn),由此設(shè)兩對(duì)角線所在直線方程為:y=kx,及y=-
1
k
x
,
y=kx
y=-4x3+3x
得4x2=3-k,
∴x=
3-k
2
或-
3-k
2
,且k<3①,
將兩根代入y=kx,得正方形一條對(duì)角線兩交點(diǎn)為A(
3-k
2
k
3-k
2
),C(-
3-k
2
,-
k
3-k
2
);
同理,將y=-
1
k
x
代入y=-4x3+3x得4x2=3+
1
k
,k>0或k<-
1
3
②,
x=
1
2
3+
1
k
-
1
2
3+
1
k
,分別代入y=-
1
k
x
得B(
1
2
3+
1
k
,-
1
2k
3+
1
k
),D(-
1
2
3+
1
k
,
1
2k
3+
1
k
),
根據(jù)|OA|=|OB|得
3-k
4
+
k2(3-k)
4
=
1
4
(3+
1
k
)
+
1
4k2
(3+
1
k
)
,
整理得(
k2+1
k
k2-k-1
k
k2-2k-1
k
=0,
∴k2-k-1=0,或k2-2k-1=0
易知,這兩個(gè)方程的兩根之積都為-1,且根都滿足條件①②,
∴符合題意的正方形有2個(gè).
故答案為:2.
點(diǎn)評(píng):本題充分利用該函數(shù)的奇偶性以及正方形的對(duì)稱性,分析出正方形的中心是原點(diǎn),且對(duì)角線互相垂直相等,通過(guò)列方程求k是解本題的關(guān)鍵,而由已知得到k應(yīng)滿足的范圍,則是問(wèn)題的易錯(cuò)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1∥BC且B1C1=
1
2
BC
,二面角A1-AB-C是直二面角
(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(
1-x
1+x
)=
1-x2
1+x2

(1)求f(x)的解析式及定義域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)結(jié)論:
①如果一條直線和另一條直線平行,那么它就和經(jīng)過(guò)另一條直線的任何平面平行;
②如果一條直線和一個(gè)平面平行,那么它就和這個(gè)平面內(nèi)的任何直線平行;
③平行于同一平面的兩條直線平行;
④垂直于同一個(gè)平面的兩條直線平行.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足關(guān)系anan+1=1-an+1(n∈N*),且a2014=2,則a2012=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱柱的體對(duì)角線長(zhǎng)為3cm,表面積為16cm2,則它的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的有
 

(1)若不等式(m+n)(
a
m
+
1
n
)≥25對(duì)任意正實(shí)數(shù)m,n恒成立,則正實(shí)數(shù)a的最小值為16.
(2)命題“?x>1,2x-a>0”的否定為“?x>1,2x-a<0”
(3)在一個(gè)2×2列聯(lián)表中,計(jì)算得K2=13,則有99%的把握確定這兩個(gè)變量間有關(guān)系.
(4)函數(shù)f(x)=sinx-x的零點(diǎn)個(gè)數(shù)有三個(gè).
臨界值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極點(diǎn)到直線ρ(cosθ-sinθ)=2的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3sin(20°+x)+5sin(x+80°)的值域?yàn)?div id="8s00mcq" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案