函數(shù)f(x)=
2-x,x≤0
4-x2
,0<x≤2
,則
2
-2
f(x)dx的值為( 。
A、π+6B、π-2C、2πD、8
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)分段函數(shù)的積分公式,分別進(jìn)行求解即可得到結(jié)論.
解答: 解:∵f(x)=
2-x,x≤0
4-x2
,0<x≤2
,
2
-2
f(x)dx=
0
-2
(2-x)dx
+
2
0
4-x2
dx=(2x-
1
2
x2
)|
 
0
-2
+
2
0
4-x2
dx=6+
2
0
4-x2
dx=6+
2
0
4-x2
dx,
設(shè)y=
4-x2
dx,(y≥0,0<x≤2),
則x2+y2=4(y≥0,0<x≤2,)對(duì)應(yīng)的曲線為半徑為2的圓位于第一象限內(nèi)的部分,對(duì)應(yīng)的面積S=
1
4
π×22

根據(jù)積分的幾何意義可得
2
0
4-x2
dx=π,
2
-2
f(x)dx=-6+
2
0
4-x2
dx=π+6,
故選:A
點(diǎn)評(píng):本題主要考查積分的計(jì)算,要求熟練掌握常見(jiàn)函數(shù)的積分公式,對(duì)于不好求的積分函數(shù),要利用對(duì)應(yīng)的區(qū)域面積進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)x(萬(wàn)元) 2 3 4 5
利潤(rùn)y(萬(wàn)元) 26 49 54
根據(jù)上表可得回歸方程為
y
=9.4x+9.1,表中有一數(shù)據(jù)丟失,請(qǐng)推算該數(shù)據(jù)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-l)2+y2=l與直線l:x-2y+1=0相交于A、B兩點(diǎn),則|AB|=( 。
A、
2
5
5
B、
5
5
C、
2
3
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(
1
2
 x2+ax<(
1
2
2x+a-2恒成立,則a的取值范圍是( 。
A、[-2,2]
B、(-2,2)
C、[0,2]
D、[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
3+i
2-i
等于( 。
A、1-iB、-1-i
C、1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x>3”是“x2>9”的( 。
A、充分不必要條件
B、必要不充分條件
C、既充分又必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),短軸的一個(gè)端點(diǎn)為M,
△MF1F2為等邊三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(0,-2)的直線l與橢圓C相交于A,B兩點(diǎn),在直線y=-
1
2
上是否存在點(diǎn)N,使得四邊形OANB為矩形?若存在,求出N點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正項(xiàng)數(shù)列{an}滿足條件:存在正整數(shù)k,使得
an+k
an
=
an
an-k
對(duì)一切n∈N*,n>k都成立,則稱數(shù)列{an}為k級(jí)等比數(shù)列.
(1)已知數(shù)列{an}為2級(jí)等比數(shù)列,且前四項(xiàng)分別為4,
1
3
,2,1,求a8•a9的值;
(2)若an=2nsin(ωn+
π
6
)(ω為常數(shù)),且{an}是3級(jí)等比數(shù)列,求ω所有可能值的集合,并求ω取最小正值時(shí)數(shù)列{an}的前3n項(xiàng)和S3n;
(3)證明:{an}為等比數(shù)列的充要條件是{an}既為2級(jí)等比數(shù)列,{an}也為3級(jí)等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四川省第十二屆運(yùn)動(dòng)會(huì)將于2014年8月18日在我市開(kāi)幕.為了搞好接待工作,大會(huì)組委會(huì)在四川職業(yè)技術(shù)學(xué)院招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高(單位:cm)編成如下莖葉圖:

若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”
(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,再?gòu)倪@5人中選2人,那么至少有1人是“高個(gè)子”的概率是多少?
(2)若從身高180cm以上(包括180cm)的志愿者中選出男、女各一人,求這2人身高相差5cm以上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案