已知函數(shù)(其中為正常數(shù),)的最小正周期為

(1)求的值;

(2)在△中,若,且,求

 

【答案】

(1) (2)

【解析】

試題分析:(1)∵

.   

的最小正周期為,為正常數(shù),∴,∴. 

(2)由(1)可知.設(shè)是三角形的內(nèi)角,則∵

,得,∴,解得

由已知,是△的內(nèi)角,

,,∴.     

由正弦定理,得

考點(diǎn):三角函數(shù)的周期性及其求法;兩角和與差的正弦函數(shù);y=Asin(ωx+φ)中參數(shù)的物理意義.

點(diǎn)評(píng):本題主要考查三角函數(shù)的誘導(dǎo)公式,二倍角公式和三角函數(shù)的周期及其求法,并結(jié)合解斜三角形知識(shí)考查了正弦定理等知識(shí).屬于三角函數(shù)章節(jié)與解斜三角形的綜合考查.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題:
①工廠制造的某機(jī)械零件尺寸ξ~N(4,
1
9
),在一次正常的試驗(yàn)中,取1000個(gè)零件時(shí),不屬于區(qū)間(3,5)這個(gè)尺寸范圍的零件大約有3個(gè).
②拋擲n次硬幣,記不連續(xù)出現(xiàn)兩次正面向上的概率為Pn,則
lim
n→∞
Pn=0
③若直線ax+by-3a=0與雙曲線
x2
9
-
y2
4
=1有且只有一個(gè)公共點(diǎn),則這樣的直線有2條.
④已知函數(shù)f(x)=x+
1
x
+a2,g(x)=x3-a3+2a+1,若存在x1,x2∈[
1
a
,a](a>1),使得|f(x1)-g(x2)|≤9,則a的取值范圍是(1,4].
其中正確的命題是
①②④
①②④
(寫出所有正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

以下四個(gè)命題:
①工廠制造的某機(jī)械零件尺寸ξ~N(4,數(shù)學(xué)公式),在一次正常的試驗(yàn)中,取1000個(gè)零件時(shí),不屬于區(qū)間(3,5)這個(gè)尺寸范圍的零件大約有3個(gè).
②拋擲n次硬幣,記不連續(xù)出現(xiàn)兩次正面向上的概率為Pn,則數(shù)學(xué)公式Pn=0
③若直線ax+by-3a=0與雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1有且只有一個(gè)公共點(diǎn),則這樣的直線有2條.
④已知函數(shù)f(x)=x+數(shù)學(xué)公式+a2,g(x)=x3-a3+2a+1,若存在x1,x2∈[數(shù)學(xué)公式,a](a>1),使得|f(x1)-g(x2)|≤9,則a的取值范圍是(1,4].
其中正確的命題是________(寫出所有正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省同步題 題型:填空題

以下四個(gè)命題:
①工廠制造的某機(jī)械零件尺寸ξ~N(4,),在一次正常的試驗(yàn)中,取1000個(gè)零件時(shí),不屬于區(qū)間(3,5)這個(gè)尺寸范圍的零件大約有3個(gè).
②拋擲n次硬幣,記不連續(xù)出現(xiàn)兩次正面向上的概率為Pn,則Pn=0
③若直線ax+by﹣3a=0與雙曲線=1有且只有一個(gè)公共點(diǎn),則這樣的直線有2條.
④已知函數(shù)f(x)=x++a2,g(x)=x3﹣a3+2a+1,若存在x1,x2∈[,a](a>1),
使得|f(x1)﹣g(x2)|≤9,則a的取值范圍是(1,4].
其中正確的命題是(    )(寫出所有正確的命題序號(hào))。

查看答案和解析>>

同步練習(xí)冊(cè)答案