14.下列計算曲線y=cosx(0≤x≤$\frac{3π}{2}$)與坐標軸圍成的面積:
(1)${∫}_{0}^{\frac{3π}{2}}$cosxdx,(2)3${∫}_{0}^{\frac{π}{2}}$cosxdx,(3)${∫}_{0}^{\frac{3π}{2}}$|cosx|dx,(4)面積為3.
用的方法或結果正確的是(2)、(3)、(4).

分析 根據(jù)積分和曲邊圖象的面積關系分別進行判斷即可.

解答 解:∵當0≤x≤$\frac{π}{2}$,時,cosx≥0,當$\frac{π}{2}$≤x≤$\frac{3π}{2}$時,cosx≤0,
∴曲線y=cosx(0≤x≤$\frac{3π}{2}$)與坐標軸圍成的面積S=${∫}_{0}^{\frac{π}{2}}$cosxdx-${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx,
(1)${∫}_{0}^{\frac{3π}{2}}$cosxdx,錯誤,
(2)函數(shù)在0≤x≤$\frac{π}{2}$,$\frac{π}{2}$≤x≤π,π≤x≤$\frac{3π}{2}$三段的面積相同,
則S=3${∫}_{0}^{\frac{π}{2}}$cosxdx,正確
(3)${∫}_{0}^{\frac{3π}{2}}$|cosx|dx,正確
(4)面積為S=3${∫}_{0}^{\frac{π}{2}}$cosxdx=3sinx|${\;}_{0}^{\frac{π}{2}}$=3(sin$\frac{π}{2}$-sin0)=3.
正確,
故答案為:(2)、(3)、(4);

點評 本題主要考查積分的幾何意義,當f(x)≥0時,積分的幾何意義為對應曲邊圖象的面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.設y=f(t)是某港口水的深度關于時間t(時)的函數(shù),其中0≤t≤24,下表是該港口某一天從0至24時記錄的時間t與水深y的關系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象.
根據(jù)上述數(shù)據(jù),函數(shù)y=f(t)的解析式為$y=3sin\frac{π}{6}t+12$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果兩組數(shù)x1,x2,…,xn和y1,y2,…,yn的平均數(shù)分別為$\overline{x}$和$\overline{y}$,標準差分別為s1和s2,那么合為一組數(shù)x1,x2,…,xn,y1,y2,…,yn后的平均數(shù)和標準差分別是( 。
A.$\overline{x}$+$\overline{y}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$B.$\overline{x}$+$\overline{y}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$
C.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$D.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.3e,π3,3π,e3這四個數(shù)中最大的數(shù)是3π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-a(x-1)(其中a>0,e是自然對數(shù)的底數(shù)).
(1)若x=$\frac{1}{e}$是函數(shù)f(x)的一個極值點,求a的值;
(2)若過原點所作曲線y=f(x)的切線l與直線y=-ex+1垂直,證明:$\frac{e-1}{e}<a<\frac{{e}^{2}-1}{e}$;
(3)設g(x)=f(x)+ex-1,當x≥1時,g(x)≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知幾何體O-ABCD的底面ABCD是邊長為$\sqrt{3}$的正的方形,且該幾何體體積的最大值為$\frac{{3\sqrt{2}}}{2}$,則該幾何體外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知f(x)=ex-ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當x>0時,ex+(1-e)x-xlnx-1≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知⊙O的方程為x2+y2=10.
(1)求直線:x=1被⊙O截的弦AB的長;
(2)求過點(-3,1)且與⊙O相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若點A(m,0)與點B(2,m)分別在直線x+y-1=0的兩側,則m的取值范圍為-1<m<1.

查看答案和解析>>

同步練習冊答案