函數(shù)y=ax(a>0,且a≠1)在[1,3]上的最大值比最小值大
a
2
,則a的值是
 
考點(diǎn):指數(shù)函數(shù)單調(diào)性的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)a>1時(shí),y=ax為增函數(shù),當(dāng)0<a<1時(shí),y=ax為減函數(shù),然后分別求出最值,問題得以解決.
解答: 解:當(dāng)a>1時(shí),y=ax為增函數(shù),在[1,3]上的最大值比最小值大
a
2
,
a3-a=
a
2

解得,a=
6
2

當(dāng)0<a<1時(shí),y=ax為減函數(shù),在[1,3]上的最大值比最小值大
a
2
,
∴a-a3=
a
2

解得,a=
2
2

故答案為:
6
2
2
2
點(diǎn)評:本題主要考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=a2x2-2a2x+1在[-1,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c.若a=c=
6
,sin
B
2
=
3
3
,則cosB=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是曲線x2+y2-2x-3=0上動點(diǎn),點(diǎn)A(-3,2)為線段PQ的中點(diǎn),則動點(diǎn)Q的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某研究機(jī)構(gòu)對高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):
x 6 8 10 12
y 2 3 5 6
根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
中的
b
的值為0.7,則記憶力為14的同學(xué)的判斷力約為
 
.(附:線性回歸方程
y
=
b
x+
a
中,
a
=
.
y
-
b
.
x
,其中
.
x
,
.
y
為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,則目標(biāo)函數(shù)z=3x-y+3的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(3-2i)÷(2+3i)=( 。
A、iB、-1C、-iD、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足x+4y=1,則xy的值域?yàn)椋ā 。?/div>
A、(0,
1
16
]
B、[-
1
16
,
1
16
]
C、(-∞,
1
16
]
D、(-∞,
1
8
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若Sn=cos
π
8
+cos
8
+…+cos
8
(n∈N*),則在S1,S2,…,S2014中,正數(shù)的個(gè)數(shù)是(  )
A、882B、756
C、750D、378

查看答案和解析>>

同步練習(xí)冊答案