分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用投影的定義,利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出不等式組$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分),
區(qū)域內(nèi)的點(diǎn)在直線x+y-2=0上的投影構(gòu)成線段A′B′,
由$\left\{\begin{array}{l}{x+2y=0}\\{x-2y+2=0}\end{array}\right.$得A(-1,$\frac{1}{2}$)
由$\left\{\begin{array}{l}{x+y=0}\\{x-2y+2=0}\end{array}\right.$得B(2,-2),
則|AB|=|2+1|=3,
故答案為:3.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,作出不等式組對(duì)應(yīng)的平面區(qū)域,利用投影的定義以及數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{7}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$或$\frac{2π}{3}$ | B. | $\frac{π}{6}$或$\frac{5π}{6}$ | C. | $\frac{π}{4}$或$\frac{3π}{4}$ | D. | $\frac{π}{3}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{7π}{12}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z | B. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z | ||
C. | [kπ-$\frac{π}{12}$,kπ+$\frac{π}{12}$],k∈Z | D. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com