【題目】如果二面角α﹣L﹣β的大小是60°,線段AB在α內(nèi),AB與L所成的角為60°,則AB與平面β所成角的正切值是 .
【答案】
【解析】解:過點(diǎn)A作平面β的垂線,垂足為C,在β內(nèi)過C作l的垂線,垂足為D. 連結(jié)AD,根據(jù)三垂線定理可得AD⊥L,
因此,∠ADC為二面角α﹣L﹣β的平面角,∠ADC=60°
又∵AB與L所成角為60°,
∴∠ABD=60°,
連結(jié)BC,可得BC為AB在平面β內(nèi)的射影,
∴∠ABC為AB與平面β所成的角.
設(shè)AD=2x,則Rt△ACD中,AC=ADsin60°= x,
Rt△ABD中,AB= = x
∴Rt△ABC中,sin∠ABC= =34,
∴tan∠ABC=
所以答案是: .
【考點(diǎn)精析】掌握空間角的異面直線所成的角是解答本題的根本,需要知道已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過變換后得曲線.
(1)求的方程;
(2)若為曲線上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線的斜率分別為且,求直線被圓截得弦長(zhǎng)的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=ax﹣3.
(1)當(dāng)a=l時(shí),確定函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上的單調(diào)性;
(2)若對(duì)任意x∈[0,4],總存在x0∈[﹣2,2],使得g(x0)=f(x)成立,求 實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=2 ,AD=2 ,AA1=2,BC和A1C1所成的角=度 AA1和BC1所成的角=度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ),曲線在處的切線方程為.
(Ⅰ)求, 的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足的常數(shù)為.令函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ),若是的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0).
(1)證明函數(shù)f(x)在(0,2]上是減函數(shù),(2,+∞)上是增函數(shù);
(2)若方程f(x)=0有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)g(x)=f(x)﹣4的奇偶性;
(3)在(2)的條件下探求方程f(x)=m(m≥8)的根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,底面四邊形ABCD為菱形,AB=2,BD=2 ,M,N分別是線段PA,PC的中點(diǎn). (Ⅰ)求證:MN∥平面ABCD;
(Ⅱ)求異面直線MN與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)用定義證明函數(shù)f(x)在R上的單調(diào)性;
(3)若對(duì)任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com