函數(shù)y=2sin2x是( 。
分析:利用正弦函數(shù)的降冪公式可求得函數(shù)的解析式,從而可得到答案.
解答:解:∵y=2sin2x=1-cos2x,
令f(x)=1-cos2x,
∵其最小正周期T=
2
=π,故排除C,D;
∵f(-x)=1-cos2(-x)=1-cos2x=f(x),
∴y=1-cos2x為偶函數(shù),可排除B;
∴y=1-cos2x為最小正周期是π的偶函數(shù).
故選A.
點評:本題考查二倍角的余弦及其性質(zhì),考查正弦函數(shù)的降冪公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
2
sin2x
的圖象向右平移
π
6
個單位后,其圖象的一條對稱軸方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2cos2x+sin2x-1,給出下列四個命題
①函數(shù)在區(qū)間[
π
8
,
8
]
上是減函數(shù);②直線x=
π
8
是函數(shù)圖象的一條對稱軸;③函數(shù)f(x)的圖象可由函數(shù)y=
2
sin2x
的圖象向左平移
π
4
而得到;④若x∈[0,
π
2
]
,則f(x)的值域是[-1,
2
]
.其中所有正確的命題的序號是( 。
A、①②B、①③C、①②④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin2x-1的最小正周期為
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2
sin(2x+
π
4
)+2
,求
(1)函數(shù)的最小正周期是多少?
(2)函數(shù)的單調(diào)增區(qū)間是什么?
(3)函數(shù)的圖象可由函數(shù)y=
2
sin2x(x∈R)
的圖象如何變換而得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin2x-sin2x的單調(diào)遞減區(qū)間是
[kπ+
π
8
,kπ+
8
],k∈z
[kπ+
π
8
,kπ+
8
],k∈z

查看答案和解析>>

同步練習(xí)冊答案