【題目】對于定義域相同的函數(shù)和,若存在實數(shù),使,則稱函數(shù)是由“基函數(shù),”生成的.
(1)若函數(shù)是“基函數(shù),”生成的,求實數(shù)的值;
(2)試利用“基函數(shù),”生成一個函數(shù),且同時滿足:①是偶函數(shù);②在區(qū)間上的最小值為.求函數(shù)的解析式.
【答案】(1) . (2)
【解析】
(1)根據(jù)基函數(shù)的定義列方程,比較系數(shù)后求得的值.(2)設(shè)出的表達式,利用為偶函數(shù),結(jié)合偶函數(shù)的定義列方程,化簡求得,由此化簡的表達式,構(gòu)造函數(shù),利用定義法證得在上的單調(diào)性,由此求得的最小值,也即的最小值,從而求得的最小值,結(jié)合題目所給條件,求出的值,即求得的解析式.
解:(1)由已知得,
即,
得,所以.
(2)設(shè),則.
由,得,
整理得,即,
即對任意恒成立,所以.
所以
.
設(shè),,令,則,
任取,且
則,
因為,且
所以,,,故
即,所以在單調(diào)遞增,
所以,且當時取到“”.
所以,
又在區(qū)間的最小值為,
所以,且,此時,
所以
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點,交C的準線于P,Q兩點.
(1)若F在線段AB上,R是PQ的中點,證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E,F(xiàn)分別是AB,PD的中點,若PA=AD=3,CD=
①求證:AF∥平面PCE
②求證:平面PCE⊥平面PCD
③求直線FC與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.
(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列a1,a2,…,an,…中的每一項都不為0.求證:{an}為等差數(shù)列的充要條件是:對任何n∈N+,都有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com