若a>0,b>0,且2a+b=1,則S=2
ab
-(4a2+b2) 的最大值是
 
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用
(2a)2+b2
2
2a+b
2
2ab
,可得
2ab
1
2
,4a2+b2
1
2
,即可得出.
解答: 解:∵2a+b=1,a>0,b>0,
∴由
(2a)2+b2
2
2a+b
2
2ab
,可得
2ab
1
2
,4a2+b2
1
2
,
∴S=2
ab
-(4a2+b2) ≤2×
1
2
2
-
1
2
=
2
-1
2
,當(dāng)且僅當(dāng)b=2a=
1
2
時(shí)取等號(hào).
∴S的最大值為
2
-1
2

故答案為:
2
-1
2
點(diǎn)評(píng):本題考查了基本不等式及其變形應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),若橢圓C的一個(gè)焦點(diǎn)為F(
2
,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足
AQ
=
QB
NQ
AB
=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心事為
2
2
,過(guò)其右焦點(diǎn)F2作與x軸垂直的直線l與該橢圓交于A、B兩點(diǎn),與拋物線y2=4x交于C、D兩點(diǎn),且
AB
=
2
2
CD

(Ⅰ)求橢圓E的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓E相交于G、H兩點(diǎn),設(shè)P為橢圓E上一點(diǎn),且滿足
OG
+
OH
=t
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|
OG
-
OH
|<
8
11
3
時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在學(xué)習(xí)完統(tǒng)計(jì)學(xué)知識(shí)后,兩位同學(xué)對(duì)所在年級(jí)的1200名同學(xué)一次數(shù)學(xué)考試成績(jī)作抽樣調(diào)查,兩位同學(xué)采用簡(jiǎn)單隨機(jī)抽樣方法抽取100名學(xué)生的成績(jī),并將所選的數(shù)學(xué)成績(jī)制成如下統(tǒng)計(jì)表,設(shè)本次考試的最低期望分?jǐn)?shù)為90分,優(yōu)等生最低分130分,并且考試成績(jī)分?jǐn)?shù)在[85,90)的學(xué)生通過(guò)自身努力能達(dá)到最低期望分?jǐn)?shù).
(Ⅰ)求出各分?jǐn)?shù)段的頻率并作出頻率分布直方圖;
(Ⅱ)用所抽學(xué)生的成績(jī)?cè)诟鱾(gè)分?jǐn)?shù)段的頻率表示概率,請(qǐng)估計(jì)該校學(xué)生數(shù)學(xué)成績(jī)達(dá)到最低期望的學(xué)生分?jǐn)?shù)和優(yōu)等生人數(shù);
(Ⅲ)設(shè)考試成績(jī)?cè)赱85,90)的學(xué)生成績(jī)?nèi)缦拢?0,81,83,84,86,89,從分?jǐn)?shù)在[85,90)的學(xué)生中抽取2人出來(lái)檢查數(shù)學(xué)知識(shí)的掌握情況,求恰好有1名學(xué)生通過(guò)自身努力達(dá)到最低期望分?jǐn)?shù)的概率.
分?jǐn)?shù)段 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 9 6 12 18 21 16 12 6
頻率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且點(diǎn)(
2
,
6
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)A,B分別是橢圓C的左右頂點(diǎn),直線經(jīng)過(guò)點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓C上異于點(diǎn)A,B的任意一點(diǎn),直線AP交于點(diǎn)M,設(shè)直線OM,PB的斜率分別為k1,k2,求證:k1•k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:程序框圖中,若輸入n=6,m=4,那么輸出的p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí)f(x)=x2-2x,若關(guān)于x的方程f(x)=a有且僅有2個(gè)解,則實(shí)數(shù)a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足約束條件
x+3y-3≥0
5x-3y-5≤0
x-y+1≥0
,則z=x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,若復(fù)數(shù)
1+i
1-i
=a+bi(a,b∈R),則a+b=( 。
A、-iB、iC、-1D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案