13.已知函數(shù)f(n)=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{f(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,若bn=f(2n+4),n∈N*,則數(shù)列{bn}的前n(n≥3)項和Sn等于2n+n.

分析 由函數(shù)f(n)=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{f(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,bn=f(2n+4),可得bn=f(2n+4)=f(2n-1+2)=f(2n-2+1)=2n-1+1,b1=f(6)=f(3)=5,b2=f(8)=f(2)=f(1)=1.利用等比數(shù)列的求和公式即可得出.

解答 解:由函數(shù)f(n)=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{f(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,bn=f(2n+4),
可得bn=f(2n+4)=f(2n-1+2)=f(2n-2+1)=2n-1+1,
b1=f(6)=f(3)=5,b2=f(8)=f(2)=f(1)=1.
∴數(shù)列{bn}的前n(n≥3)項和Sn=5+1+22+23+…+2n-1+n-2=4+$\frac{4({2}^{n-2}-1)}{2-1}$+n=2n+n.
故答案為:2n+n.

點評 本題考查了數(shù)列遞推關系、等比數(shù)列的通項公式與求和公式、分類討論方法考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.若實數(shù)x,y滿足條件$\left\{\begin{array}{l}2x-y+1≥0\\ 2x+y-5≥0\\ x-2≤0\end{array}\right.$,則$z=\frac{4x}{3x+2y}$的最大值為( 。
A.1B.$\frac{64}{15}$C.$\frac{16}{19}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.直線x=a分別與曲線y=2x+1,y=x+lnx交于A,B,則|AB|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x),g(x)是定義在R上的一個奇函數(shù)和偶函數(shù),且f(x-1)+g(x-1)=2x,則函數(shù)f(x)=2x-2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}(x-y)(x+y)≥0\\-1≤x≤1\end{array}\right.$內(nèi)的任意一點,A(2,1),則$\overrightarrow{OA}•\overrightarrow{OP}$的最大值,最小值分別為( 。
A.3,-3B.1,-3C.1,-1D.3,-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=x+2y的最大值與最小值的差為( 。
A.3B.4C.7D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知拋物線C:x2=2py(p>0),直線l:y=-2,且拋物線的焦點到直線l的距離為3.
(Ⅰ)求拋物線的方程;
(Ⅱ)動點P在直線l上,過P點作拋物線的切線,切點分別為A,B,線段AB的中點為Q,證明:PQ⊥x軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知實數(shù)x,y滿足線性約束條件$\left\{{\begin{array}{l}{x-2\;≥\;0}\\{x+y\;≤\;6}\\{2x-y\;≤\;6}\end{array}}\right.$,若x-2y≥m恒成立,則實數(shù)m的取值范圍是(-∞,-6].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知三條直線為l1:4x+y=4;l2:mx+y=0,l3:x-my=2,若此三條直線不能構成三角形,則實數(shù)m=4、或-$\frac{1}{4}$、或-1、或1或$\frac{-1±\sqrt{17}}{2}$.

查看答案和解析>>

同步練習冊答案