若ab>0,則下列四個等式:
①lg(ab)=lga+lgb
②lg(
a
b
)=lga-lgb
1
2
lg(
a
b
2=lg(
a
b

④lg(ab)=
1
logab10
中正確等式的符號是( 。
A、①②③④B、①②C、③④D、③
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:對于①②當a,b<0時,lg(ab)=lga+lgb,lg(
a
b
)=lga-lgb,不成立.
1
2
lg(
a
b
2=lg(
a
b
),正確;
④ab=1時不正確.
解答: 解:①②∵ab>0,∴a,b<0時,
下列等式:lg(ab)=lga+lgb,lg(
a
b
)=lga-lgb,不成立.
∴①②不正確;
1
2
lg(
a
b
2=lg(
a
b
),正確;
④lg(ab)=
1
logab10
,ab=1時不正確.
綜上可得:只有③正確.
故選:D.
點評:本題考查了對數(shù)的運算法則,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知{an}是公差不為0的等差數(shù)列,a1=2且a2,a4,a8成等比數(shù)列,若bn=
2
n(an+2)
,則數(shù)列{bn}的前n項和的取值范圍是( 。
A、[
1
2
,1)
B、(0,1)
C、(0,
1
2
]
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2
(1)設(shè)bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列;
(2)令cn=
an
2n-1
,求cn及數(shù)列an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù):f(x)=asin2x+cos2x且f(
π
3
)=
3
-1
2

(1)求a的值和f(x)的最大值;
(2)求f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某旅游景點預計2014年1月份起前x個月的旅游人數(shù)的和p(x)(單位:萬人)與x的關(guān)系近似滿足p(x)=
1
2
x(x+1)•(39-2x),(x∈N+,x≤12)已知第x月的人均消費額q(x)(單位:元)與x的近似關(guān)系是 q(x)=
35-2x,(x∈N+,1≤x≤6)
16
x
,(x∈N+,7≤x≤12)

(1)寫出2014年第x月的旅游人數(shù)f(x)(單位:萬人)與x的函數(shù)關(guān)系式;
(2)試問2014年哪個月的旅游消費總額最大,最大旅游消費額為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的方程2x+m=0在區(qū)間[-1,2]內(nèi)總有解的一個必要不充分條件是( 。
A、[-4,-
1
2
]
B、[-4,0]
C、[-4,-1]
D、[1,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的短軸為2
3
,左、右焦點分別為F1、F2,點P在橢圓上,且滿足△PF1F2的周長為6.
(1)求橢圓的標準方程;
(2)若直線l與橢圓交于A、B兩點,△ABO面積為
3
,判斷|OA|2+|OB|2是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點G(5,4),圓C1:(x-1)2+(x-4)2=25,過點G的動直線l與圓C1相交于E、F兩點,線段EF的中點為C.
(1)求點C的軌跡C2的方程;
(2)若過點A(1,0)的直線l1與C2相交于P、Q兩點,線段PQ的中點為M;又l1與l2:x+2y+2=0的交點為N,求證|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知線性相關(guān)的兩個變量x,y之間的幾組數(shù)據(jù)如下表:
x123456
y021334
其線性回歸方程為
y
=bx+a,則a,b滿足的關(guān)系式為
 

查看答案和解析>>

同步練習冊答案