函數(shù)y=
x
2-x
+lg(1-x)的定義域?yàn)?!--BA-->
[0,1)
[0,1)
分析:根據(jù)偶次根式被開方數(shù)大于等于0,以及對(duì)數(shù)函數(shù)的真數(shù)大于0,建立不等式組,解之即可求出所求.
解答:解:∵y=
x
2-x
+lg(1-x)
x
2-x
≥0
1-x>0
解得0≤x<1
即函數(shù)y=
x
2-x
+lg(1-x)的定義域?yàn)閇0,1)
故答案為:[0,1)
點(diǎn)評(píng):本題主要考查了根式函數(shù)與對(duì)數(shù)函數(shù)的定義域,以及不等式組的解法,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)點(diǎn)P(m,n)在圓x2+y2=2上,l是過點(diǎn)P的圓的切線,切線l與函數(shù)y=x2+x+k(k∈R)的圖象交于A,B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn).
(1)當(dāng)k=-2,m=-1,n=-1時(shí),判斷△OAB的形狀;
(2)△OAB是以AB為底的等腰三角形;
①試求出P點(diǎn)縱坐標(biāo)n滿足的等量關(guān)系;
②若將①中的等量關(guān)系右邊化為零,左邊關(guān)于n的代數(shù)式可表為(n+1)2(ax2+bx+c)的形式,且滿足條件的等腰三角形有3個(gè),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2-x-6的圖象與坐標(biāo)軸交于A、B、C三點(diǎn),圓M為△ABC的外接圓,斜率為2的直線l與圓M相交于不同兩點(diǎn)E、F,令EF的中點(diǎn)為N,O為坐標(biāo)原點(diǎn),且|ON|=
12
|EF|

(Ⅰ)求圓M的方程;
(Ⅱ)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2(-
1
2
≤x≤
1
2
)圖象上一點(diǎn)P,以點(diǎn)P為切點(diǎn)的切線為直線l,則直線l的傾斜角的范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)下面四個(gè)命題:
①命題“?x∈R,使得x2+x+l<0”的否定是真命題;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知直線l1:a2x-y+6=0與l2:4x-(a-3)y+9=0,則l1⊥l2的必要條件是a=-1:
④函數(shù)f(x)=|lgx|-(
12
x有兩個(gè)零點(diǎn)x1、x2,則一定有0<x1x2<1.
其中真命題是
①②④
①②④
(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省揚(yáng)州大學(xué)附中高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

設(shè)點(diǎn)P(m,n)在圓x2+y2=2上,l是過點(diǎn)P的圓的切線,切線l與函數(shù)y=x2+x+k(k∈R)的圖象交于A,B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn).
(1)當(dāng)k=-2,m=-1,n=-1時(shí),判斷△OAB的形狀;
(2)△OAB是以AB為底的等腰三角形;
①試求出P點(diǎn)縱坐標(biāo)n滿足的等量關(guān)系;
②若將①中的等量關(guān)系右邊化為零,左邊關(guān)于n的代數(shù)式可表為(n+1)2(ax2+bx+c)的形式,且滿足條件的等腰三角形有3個(gè),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案