精英家教網 > 高中數學 > 題目詳情
過點C(0,1)的橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的離心率為
3
2
,橢圓與x軸交于兩點A(a,0)、B(-a,0),過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.
(1)求橢圓的方程;
(2)當直線l過橢圓右焦點時,求線段CD的長;
(3)當點P異于點B時,求證:
OP
OQ
為定值.
分析:(1)由已知得b=1,
c
a
=
3
2
,由a2=c2+b2可求a,b,進而可求橢圓方程
(2)由橢圓的右焦點為(
3
,0)
,可得直線l的方程為 y=-
3
3
x+1
,聯立橢圓方程可求D,根據弦長公式可求CD
(3)當直線l與x軸垂直時與題意不符,故設直線l的方程為y=kx+1(k≠0且k≠
1
2
)
.代入橢圓方程可求D點的坐標,聯立直線AC,直線BD的方程可求Q,結合已知P可求
OP
,
OQ
,根據向量的數量積的坐標表示代入可證
解答:解:(1)由已知得b=1,
c
a
=
3
2
,由a2=c2+b2=c2+1
解得a=2,
故橢圓方程為
x2
4
+y2=1
.…(3分)
(2)橢圓的右焦點為(
3
,0)
,此時直線l的方程為 y=-
3
3
x+1
,
代入橢圓方整理可得,7x2-8
3
x=0
,解得x1=0,x2=
8
3
7

代入直線l的方程得 y1=1,y2=-
1
7
,所以D(
8
3
7
,-
1
7
)
,
|CD|=
(
8
3
7
-0)
2
+(-
1
7
-1)
2
=
16
7
.…(6分)
(3)當直線l與x軸垂直時與題意不符.…(7分)
設直線l的方程為y=kx+1(k≠0且k≠
1
2
)
.代入橢圓方程得(4k2+1)x2+8kx=0.
解得x1=0,x2=
-8k
4k2+1
,代入直線l的方程得y1=1,y2=
1-4k2
4k2+1
,
所以D點的坐標為(
-8k
4k2+1
,
1-4k2
4k2+1
)
.…(10分)
又直線AC的方程為
x
2
+y=1
,又直線BD的方程為y=
1+2k
2-4k
(x+2)
,聯立得
x=-4k
y=2k+1.

因此Q(-4k,2k+1),又P(-
1
k
,0)

所以
OP
OQ
=(-
1
k
,0)(-4k,2k+1)=4

OP
OQ
為定值.…(14分)
點評:本題主要考察了由橢圓的性質求解橢圓方程,直線與曲線相交的弦長公式的應用及向量的數量積的坐標表示的應用,屬于圓錐曲線問題的綜合應用
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在空間直角坐標系O-xyz中,方程
x2
a2
+
y2
b2
+
z2
c2
=1(a>b>c>0)
表示中心在原點、其軸與坐標軸重合的某橢球面的標準方程.2a,2b,2c分別叫做橢球面的長軸長,中軸長,短軸長.類比在平面直角坐標系中橢圓標準方程的求法,在空間直角坐標系O-xyz中,若橢球面的中心在原點、其軸與坐標軸重合,平面xOy截橢球面所得橢圓的方程為
x2
9
+
y2
16
=1
,且過點M(1,2,
23
)
,則此橢球面的標準方程為
x2
9
+
y2
16
+
z2
36
=1
x2
9
+
y2
16
+
z2
36
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點F,設向量
OP
=λ(
OA
+
OB
)(λ>0),若點P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣二模)已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個頂點B與兩個焦點F1,F2為頂點的三角形周長是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標準方程;
(2)若過點Q(1,
1
2
)引曲線C的弦AB恰好被點Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數)到實數集R上的映射過程:區(qū)間(0,k)中的實數m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數m對應的實數就是n,記作f(m)=n,

現給出下列5個命題①f(
k
2
)=6
;②函數f(m)是奇函數;③函數f(m)在(0,k)上單調遞增;④函數f(m)的圖象關于點(
k
2
,0)
對稱;⑤函數f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是(  )

查看答案和解析>>

同步練習冊答案