如圖,平面四邊形的4個頂點都在球的表面上,為球的直徑,為球面上一點,且平面 ,,點為的中點.
(1) 證明:平面平面;
(2) 求平面與平面所成銳二面角的余弦值.
(1)詳見解析;(2)
【解析】
試題分析:本小題通過立體幾何的相關(guān)知識,具體涉及到直線與直線垂直的判斷、線面的平行關(guān)系的判斷以及二面角的求法等有關(guān)知識,考查考生的空間想象能力、推理論證能力,對學(xué)生的數(shù)形結(jié)合思想的考查也有涉及,本題是一道立體幾何部分的綜合題,屬于中檔難度試題. (1)借助幾何體的性質(zhì),得到,借助線面平行的判定定理得到線面平行,進而利用面面平行的判定定理證明平面平面;(2)利用空間向量的思路,建立坐標(biāo)系,明確各點坐標(biāo),求解兩個半平面的法向量,進而利用向量的夾角公式求解二面角的平面角.
試題解析:(1) 證明:且,
則平行且等于,即四邊形為平行四邊形,所以.
(6分)
(2) 以為原點,方向為軸,以平面內(nèi)過點且垂直于方向為軸 以方向為軸,建立如圖所示坐標(biāo)系.
則,,,
,,
由,,
可知
由,,
可知
則,
因此平面與平面所成銳二面角的余弦值為. (12分)
考點:(1)直線與直線垂直的判斷、線面的平行關(guān)系的判斷;(2)二面角的求法.
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省長春市畢業(yè)班第四次調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,平面四邊形的4個頂點都在球的表面上,為球的直徑,為球面上一點,且平面 ,,點為的中點.
(1) 證明:平面平面;
(2) 求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com