(2013•四川)設(shè)函數(shù)f(x)=
ex+x-a
(a∈R,e為自然對數(shù)的底數(shù)).若存在b∈[0,1]使f(f(b))=b成立,則a的取值范圍是(  )
分析:根據(jù)題意,問題轉(zhuǎn)化為“存在b∈[0,1],使f(b)=f-1(b)”,即y=f(x)的圖象與函數(shù)y=f-1(x)的圖象有交點,且交點的橫坐標(biāo)b∈[0,1].由y=f(x)的圖象與y=f-1(x)的圖象關(guān)于直線y=x對稱,得到函數(shù)y=f(x)的圖象與y=x有交點,且交點橫坐標(biāo)b∈[0,1].因此,將方程
ex+x-a
=x
化簡整理得ex=x2-x+a,記F(x)=ex,G(x)=x2-x+a,由零點存在性定理建立關(guān)于a的不等式組,解之即可得到實數(shù)a的取值范圍.
解答:解:由f(f(b))=b,可得f(b)=f-1(b)
其中f-1(x)是函數(shù)f(x)的反函數(shù)
因此命題“存在b∈[0,1]使f(f(b))=b成立”,轉(zhuǎn)化為
“存在b∈[0,1],使f(b)=f-1(b)”,
即y=f(x)的圖象與函數(shù)y=f-1(x)的圖象有交點,
且交點的橫坐標(biāo)b∈[0,1],
∵y=f(x)的圖象與y=f-1(x)的圖象關(guān)于直線y=x對稱,
∴y=f(x)的圖象與函數(shù)y=f-1(x)的圖象的交點必定在直線y=x上,
由此可得,y=f(x)的圖象與直線y=x有交點,且交點橫坐標(biāo)b∈[0,1],
根據(jù)
ex+x-a
=x
,化簡整理得ex=x2-x+a
記F(x)=ex,G(x)=x2-x+a,在同一坐標(biāo)系內(nèi)作出它們的圖象,
可得
F(0)≤G(0)
F(1)≥G(1)
,即
e002-0+a
e112-1+a
,解之得1≤a≤e
即實數(shù)a的取值范圍為[1,e]
故選:A
點評:本題給出含有根號與指數(shù)式的基本初等函數(shù),在存在b∈[0,1]使f(f(b))=b成立的情況下,求參數(shù)a的取值范圍.著重考查了基本初等函數(shù)的圖象與性質(zhì)、函數(shù)的零點存在性定理和互為反函數(shù)的兩個函數(shù)的圖象特征等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)設(shè)x∈Z,集合A是奇數(shù)集,集合B是偶數(shù)集.若命題p:?x∈A,2x∈B,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)設(shè)集合A={1,2,3},集合B={-2,2},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)設(shè)sin2α=-sinα,α∈(
π
2
,π)
,則tan2α的值是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)設(shè)P1,P2,…Pn為平面α內(nèi)的n個點,在平面α內(nèi)的所有點中,若點P到點P1,P2,…Pn的距離之和最小,則稱點P為P1,P2,…Pn的一個“中位點”,例如,線段AB上的任意點都是端點A,B的中位點,現(xiàn)有下列命題:
①若三個點A、B、C共線,C在線段AB上,則C是A,B,C的中位點;
②直角三角形斜邊的中點是該直角三角形三個頂點的中位點;
③若四個點A、B、C、D共線,則它們的中位點存在且唯一;
④梯形對角線的交點是該梯形四個頂點的唯一中位點.
其中的真命題是
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案