17.化簡$\frac{sin(\frac{π}{2}-α)cos(π+α)}{sin(\frac{3π}{2}+α)}$=cosa.

分析 直接利用誘導(dǎo)公式化簡求解即可.

解答 解:$\frac{sin(\frac{π}{2}-α)cos(π+α)}{sin(\frac{3π}{2}+α)}$=$\frac{-cosαcosα}{-cosα}$=cosα.
故答案為:cosα.

點評 本題考查誘導(dǎo)公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={(x,y)|-2<y<1,x∈Z,y∈Z},B=$\{(x,y)|\frac{π}{2}<x<π,x∈Z,y∈Z\}$,則A∩B的真子集的個數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x∈R|x2-x<0},B=(0,a)(a>0),若A⊆B,則實數(shù)a的取值范圍是( 。
A.(0,1]B.(0,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在空間直角坐標系Oxyz中,設(shè)點M是點N(2,-1,4)關(guān)于坐標平面xOy的對稱點,點P(1,3,2)關(guān)于x軸的對稱點為Q,則線段MQ的長度等于( 。
A.3B.$\sqrt{21}$C.$\sqrt{53}$D.$\sqrt{61}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在等式sin(  )(1+$\sqrt{3}$tan70°)=1的括號中,填寫一個銳角,使得等式成立,這個銳角是10°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,則f(ln2)+f(ln$\frac{1}{2}$)的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$a={({\frac{1}{6}})^{\frac{1}{2}}}$,$b={log_6}\frac{1}{3}$,$c={log_{\frac{1}{6}}}\frac{1}{7}$,則a,b,c的大小關(guān)系是( 。
A.c>a>bB.a>b>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,從橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(\;a>b>0\;)$上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且$AB∥OP,\;\;|{F_1}A|\;=\sqrt{10}+\sqrt{5}$.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若M是橢圓上的動點,點N(4,2),求線段MN中點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.不等式$\frac{|x+1|}{|x+2|}$≥1的實數(shù)解為( 。
A.(-∞,2)∪(-2,-$\frac{3}{2}$]B.(-∞,-2)∪(-2,-$\frac{3}{2}$]C.(-∞,-2)D.(-2,-$\frac{3}{2}$]

查看答案和解析>>

同步練習(xí)冊答案