A. | (-∞,$\frac{1}{{e}^{3}}$) | B. | ($\frac{1}{{e}^{3}}$,+∞) | C. | (-∞,$\frac{1}{3e}$) | D. | ($\frac{1}{3e}$,+∞) |
分析 根據(jù)函數(shù)與方程的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值即可.
解答 解:由f(x)=x3lnx+m=0得x3lnx=-m,
設(shè)g(x)=x3lnx,函數(shù)的定義域為(0,+∞),
則g′(x)=x2(3lnx+1),
由g′(x)>0得x>$\frac{1}{{e}^{3}}$,
由g′(x)<0得0<x<$\frac{1}{{e}^{3}}$,
即當(dāng)x=$\frac{1}{{e}^{3}}$時,函數(shù)g(x)取得極小值同時也是最小值g($\frac{1}{{e}^{3}}$)=-$\frac{1}{3e}$,
要使函數(shù)f(x)=x3lnx+m有2個零點,等價為方程x3lnx=-m有兩個根,
則-m>-$\frac{1}{3e}$,即m<$\frac{1}{3e}$,
故實數(shù)m的取值范圍是(-∞,$\frac{1}{3e}$),
故選:C
點評 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)條件轉(zhuǎn)化為函數(shù)問題,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com