3.如果關(guān)于x的不等式3x2-a≤0的正整數(shù)解是1,2,3,那么實(shí)數(shù)a的取值范圍是(  )
A.27≤a<48B.27<a<48C.a<48D.a>27

分析 由不等式3x2-a≤0,可得a≥3x2.由題意可得:3×32≤a<3×42,解出即可..

解答 解:由不等式3x2-a≤0,可得a≥3x2
∵關(guān)于x的不等式3x2-a≤0的正整數(shù)解有且只有1,2,3,
∴3×32≤a<3×42,化為27≤a<48.
故選A.

點(diǎn)評(píng) 此題本質(zhì)是考查一元二次不等式的解法,本題先給出特殊的正整數(shù)解,然后讓你確定a的范圍,是一道不錯(cuò)的題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)常數(shù)a∈R,若(x2+$\frac{a}{x}}$)5的二項(xiàng)展開式中x項(xiàng)的系數(shù)為-80,則a等于(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,若a:b:c=1:$\sqrt{3}$:2,則B=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}3x-b,x<1\\{2^{-x}},x≥1\end{array}$,若f(f(1))=1,則b=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè){an}是遞增等比數(shù)列,已知a1+a3=5,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)令bn=lna3n+1,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x3+x2的定義域是x∈{-2,-1,0,1,2},則該函數(shù)的值域?yàn)椋ā 。?table class="qanwser">A.{-4,-2,0,2}B.{-4,0,4}C.{-2,0,2}D.{-4,0,2,12}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.試用輾轉(zhuǎn)相除法求120與168的最大公約數(shù).用更相減損術(shù)求459與357的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.甲、乙兩名考生填報(bào)志愿,要求甲、乙只能在A、B、C這3所院校中選擇一所填報(bào)志愿.假設(shè)每位同學(xué)選擇各個(gè)院校是等可能的,則院校A、B至少有一所被選擇的概率為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.方程 9x-12•3x+27=0的解集是{1,2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案