a+b>c+d的必要不充分條件是( 。
A、a>c
B、b>d
C、a>c且b>d
D、a>c或b>d
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:由a+b>c+d一定可得到a>c,或b>d,否則,若a≤c,且b≤d,則有a+b≤c+d,與a+b>c+d矛盾;而a>c,或b>d得不到a+b>c+d,舉出這樣的例子說明即可,最后便得到a+b>c+d的必要不充分條件是a>c,或b>d.
解答: 解:若a+b>c+d,則a,b中必有一個數(shù)大于c,d中一個數(shù);
∴a>c,或b>d;
而a>c,或b>d得不到a+b>c+d,比如取a=3,c=2,b=1,d=5,得到的是a+b<c+d;
所以a>c,或b>d是a+b>c+d的必要不充分條件.
故選D.
點評:考查運用舉反例的方法說明一個條件得不到另一個條件,以及充分條件、必要條件、必要不充分條件的概念.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

解方程:lg(x2+4x-26)-lg(x-3)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x-
π
4
)(0≤x≤π)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
 ①若函數(shù)f(x)對定義城內(nèi)的任意x1.x2∈R,且x1≠x2,都有[f (x1)-f (x2)](x1-x2)>O.則f′(x)≥0.
 ②若定義域為R的函數(shù)f (x》在(1,+∞)上單減,且函數(shù)f(x+1)為偶函數(shù),則f(0)>f(1).
 ③若對函數(shù)y=f(x),恒有f(x+1)=-f(-x+1)成立,則函致y=f(x)的圖象關(guān)于點(1.0)對稱.
 其中為真命題的是(  )
A、①②③B、①②C、②③D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lgx=a,lgy=b,求lg
x
-lg(
y
10
2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的雙曲線的標準方程
(1)頂點間距離為16,漸近線方程為y=±
3
4
x;
(2)與雙曲線x2-2y2=4有公共漸近線,且過點P(2,-2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直接l過拋物線C的焦點,且與C的對稱垂直,l與C交于A,B兩點,P為C的準線上一點,若△ABP的面積為36,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=sin(
11π
6
x+
π
3
),
(1)對于任意正數(shù)a,是否總能找到不小于a且不大于a+1的兩個數(shù)a和b,使f(b)=-1?證明你的結(jié)論.
(2)若限定a為自然數(shù),請重新回答和證明(2)中的問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在實數(shù)a使得g(x)=ln(1-
2a
x+2
)為奇函數(shù)同時使得h(x)=x(
1
a
+
1
ax-1
)為偶函數(shù),若存在,求a的值.

查看答案和解析>>

同步練習冊答案