a
=(1,2),
b
=(2,k2-5),
a
b
,則k=
 
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:根據(jù)兩向量平行時(shí)的坐標(biāo)運(yùn)算公式,即可求出答案.
解答: 解:∵
a
=(1,2),
b
=(2,k2-5),且
a
b
,
∴1×(k2-5)-2×2=0,
即k2=9;
解得k=±3.
故答案為:±3.
點(diǎn)評(píng):本題考查了平面向量的坐標(biāo)運(yùn)算問(wèn)題,也考查了向量平行的應(yīng)用問(wèn)題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體三視圖如圖所示,其中正視圖和側(cè)視圖都是等腰梯形,且上底長(zhǎng)為2,下底長(zhǎng)為4,腰長(zhǎng)為
5
3
,則它的體積與表面積之比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x|x-2≥0或x-1≤0},A={x|x2-4x+3>0},B={x|x≤1或x>2},求A∩B,A∪B,(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2x-3
的零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
25
+
y2
9
=1的右準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,首項(xiàng)為a1,公差為d,前n項(xiàng)和為Sn,若數(shù)列{an}中任意不同兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列為“F數(shù)列”.
(1)若a1=4,d=2,判斷該數(shù)列是否為“F數(shù)列”.
(2)若a1,d∈N,是否存在這樣的“F數(shù)列”,使S10≤70?若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
(3)試問(wèn):數(shù)列{an}為“F數(shù)列”的充要條件是什么?給出你的結(jié)論并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),則
a
b
一定滿足(  )
A、
a
b
的夾角為α-β
B、(
a
+
b
)⊥(
a
-
b
)
C、
a
b
D、
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m
(1)當(dāng)a=-3,m=0時(shí),求方程f(x)-g(x)=0的解;
(2)若方程f(x)=0在[-1,1]上有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式x+
1
x-1
+a≥9對(duì)x∈(1,+∞)恒成立,則正實(shí)數(shù)a的最小值為( 。
A、8B、6C、4D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案