8.若函數(shù)f(x)=$\sqrt{3}$sinx+cosx,0≤x<$\frac{π}{2}$,則f(x)的最大值為( 。
A.1B.2C.$\sqrt{3}$+1D.$\sqrt{3}$+2

分析 化簡函數(shù)的解析式為正弦函數(shù)的形式,利用x的范圍求解函數(shù)的最值即可.

解答 解:函數(shù)f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$),因為0≤x<$\frac{π}{2}$,所以x+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{2π}{3}$),
當(dāng)x+$\frac{π}{6}$=$\frac{π}{2}$時,函數(shù)取得最大值:2.
故選:B.

點評 本題考查三角函數(shù)的最值的求法,兩角和與差的三角函數(shù)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知矩陣A=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,B=$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$.
(1)求AB;
(2)若曲線C1:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}$=1在矩陣AB對應(yīng)的變換作用下得到另一曲線C2,求C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,∠A=60°,AB=3,AC=2.若$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AE}$=λ$\overrightarrow{AC}$-$\overrightarrow{AB}$(λ∈R),且$\overrightarrow{AD}•\overrightarrow{AE}$=-4,則λ的值為$\frac{3}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:
連續(xù)劇播放時長(分鐘)廣告播放時長(分鐘)收視人次(萬)
70560
60525
已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(I)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(II)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l經(jīng)過A(4,0)、B(0,3),直線l1⊥l,且與兩坐標(biāo)軸圍成的三角形的面積為6,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{1}{2}a{x^2}-({2a+1})x+2lnx({x∈R})$
(Ⅰ)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,橢圓的四個頂點所圍成菱形的面積為4
(Ⅰ)求橢圓的方程;
(Ⅱ)四邊形ABCD的頂點在橢圓C上,且對角線AC,BD均過坐標(biāo)原點O,若kAC•kBD=-$\frac{1}{4}$
(i)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的范圍;(ii)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體三視圖如圖所示,則該幾何體體積為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)Sn為等比數(shù)列{an}的前n項和,a2-8a5=0,則$\frac{{S}_{8}}{{S}_{4}}$的值為$\frac{17}{16}$.

查看答案和解析>>

同步練習(xí)冊答案