已知曲線C1的參數(shù)方程是
x=
t
y=
3t
3
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2,則C1與C2交點的直角坐標為
 
考點:點的極坐標和直角坐標的互化,參數(shù)方程化成普通方程
專題:直線與圓
分析:把參數(shù)方程、極坐標方程化為直角坐標方程,再把兩曲線的方程聯(lián)立方程組求得 C1與C2交點的直角坐標.
解答: 解:把曲線C1的參數(shù)方程是
x=
t
y=
3t
3
(t為參數(shù)),消去參數(shù)化為直角坐標方程為x2=3y2 (x≥0,y≥0).
曲線C2的極坐標方程是ρ=2,化為直角坐標方程為x2+y2=4.
解方程組
x2=3y2
x2+y2=4
,求得
x=
3
y=1
,∴C1與C2交點的直角坐標為(
3
,1),
故答案為:(
3
,1).
點評:本題主要考查把參數(shù)方程、極坐標方程化為直角坐標方程的方法,求兩條曲線的交點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(4x2+4ax+a2
x
,其中a<0.
(1)當a=-4時,求f(x)的單調遞增區(qū)間;
(2)若f(x)在區(qū)間[1,4]上的最小值為8,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=60°,AC=4,BC=2
3
,則△ABC的面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位向量
e1
e2
的夾角為α,且cosα=
1
3
,若向量
a
=3
e1
-2
e2
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a≠0,n是大于1的自然數(shù),(1+
x
a
n的展開式為a0+a1x+a2x2+…+anxn.若點Ai(i,ai)(i=0,1,2)的位置如圖所示,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要制作一個容器為4m3,高為1m的無蓋長方形容器,已知該容器的底面造價是每平方米20元,側面造價是每平方米10元,則該容器的最低總造價是
 
(單位:元)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合{a,b,c,d}={1,2,3,4},且下列四個關系:
①a=1;②b≠1;③c=2;④d≠4有且只有一個是正確的,則符合條件的有序數(shù)組(a,b,c,d)的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a是一個各位數(shù)字都不是0且沒有重復數(shù)字三位數(shù),將組成a的3個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=815,則I(a)=158,D(a)=851),閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個a,輸出的結果b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,網格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為( 。
A、
17
27
B、
5
9
C、
10
27
D、
1
3

查看答案和解析>>

同步練習冊答案