設Q是半徑為1的圓上一動點,若MN是該圓的一條動弦,且|MN|=
2
,則
MQ
MN
的取值范圍是
 
、
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:以與MN平行且過圓心的直線為x軸,以MN的垂直平分線為y軸,表示出M,N 點的坐標,設出Q點的坐標((cosθ,sinθ)),表示出
MQ
MN
,根據(jù)cosθ的范圍,問題得以解決.
解答: 解:以與MN平行且過圓心的直線為x軸,以MN的垂直平分線為y軸,
∵|MN|=
2

∴M(-
2
2
2
2
),N(
2
2
2
2
),
設Q(cosθ,sinθ)
MQ
=(cosθ+
2
2
,sinθ-
2
2
)
MN
=(
2
,0)
,
MQ
MN
=(cosθ+
2
2
2
=1+
2
cosθ
,
∵-1≤cosθ≤1,
MQ
MN
的取值范圍是[1-
2
,1+
2
]

故答案為:[1-
2
,1+
2
]
點評:本題主要考查了向量的數(shù)量積的運算,關鍵是建立合適的平面直角坐標系,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果兩個方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個方程為“互為生成方程對”.給出下列四對方程:
①y=sinx+cosx和y=
2
sinx+1;
②y2-x2=2和x2-y2=2;
③y2=4x和x2=4y;
④y=ln(x-1)和y=ex+1.
其中是“互為生成方程對”有(  )
A、1對B、2對C、3對D、4對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐A-BCD及其側(cè)視圖、俯視圖如圖所示,設M,N分別為線段AD,AB的中點,P為線段BC上的點,且MN⊥NP.

(1)證明:P是線段BC的中點;
(2)求二面角A-NP-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將連續(xù)正整數(shù)1,2,…,n(n∈N*)從小到大排列構(gòu)成一個數(shù)
.
123…n
,F(xiàn)(n)為這個數(shù)的位數(shù)(如n=12時,此數(shù)為123456789101112,共15個數(shù)字,F(xiàn)(12)=15),現(xiàn)從這個數(shù)中隨機取一個數(shù)字,p(n)為恰好取到0的概率.
(1)求p(100);
(2)當n≤2014時,求F(n)的表達式;
(3)令g(n)為這個數(shù)中數(shù)字0的個數(shù),f(n)為這個數(shù)中數(shù)字9的個數(shù),h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求當n∈S時p(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F(-2,0),離心率為
6
3

(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設O為坐標原點,T為直線x=-3上一點,過F作TF的垂線交橢圓于P、Q,當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體的棱長為1,C、D分別是兩條棱的中點,A、B、M是頂點,那么點M到截面ABCD的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P為拋物線y2=4x上動點,Q為圓(x-3)2+y2=1上動點,則距離|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,當x∈N*時,f(x)≥f(3)恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),動直線l與橢圓C只有一個公共點P,且點P在第一象限.
(Ⅰ)已知直線l的斜率為k,用a,b,k表示點P的坐標;
(Ⅱ)若過原點O的直線l1與l垂直,證明:點P到直線l1的距離的最大值為a-b.

查看答案和解析>>

同步練習冊答案