如圖所示,若向圓x2+y2=2內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在圓x2+y2=2內(nèi)任何一點(diǎn)是等可能的),則所投的點(diǎn)落在圓與y軸及曲線y=x2(x≥0)圍成的陰影圖形S內(nèi)部的概率是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:聯(lián)立拋物線與橢圓的方程,求出拋物線與橢圓在第一象限的交點(diǎn)A(1,1),利用定積分求出陰影部分的面積,則所投點(diǎn)落在陰影圖形內(nèi)的概率為陰影部分的面積比上圓的面積.
解答:由,得
所以拋物線y=x2與圓x2+y2=2在第一象限的交點(diǎn)為A(1,1).
如圖,

連接OA,則圖中陰影部分的面積等于八分之一圓的面積加上直線y=x與拋物線y=x2
交陰影部分的面積.
所以陰影部分的面積S===
所以,所投的點(diǎn)落在圓與y軸及曲線y=x2(x≥0)圍成的陰影圖形S內(nèi)部的概率是P=
故選D.
點(diǎn)評:本題考查了定積分,考查了幾何概型,解答此題的關(guān)鍵是求解陰影部分的面積,此題是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•大連二模)如圖所示,若向圓x2+y2=2內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在圓x2+y2=2內(nèi)任何一點(diǎn)是等可能的),則所投的點(diǎn)落在圓與y軸及曲線y=x2(x≥0)圍成的陰影圖形S內(nèi)部的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年大連市高三第二次模擬試卷數(shù)學(xué)(理科) 題型:013

如圖所示,若向圓x2+y2=2內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在圓x2+y2=2內(nèi)任何一點(diǎn)是等可能的),則所投的點(diǎn)落在圓與y軸及曲線y=x2(x≥0)圍成的陰影圖形S內(nèi)部的概率是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊答案