已知關(guān)于的不等式<0的解集為,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090810220756559976/SYS201209081022378175668595_ST.files/image005.png">。

(Ⅰ)若,求集合

(Ⅱ)若,求正數(shù)的取值范圍。

 

【答案】

解:(Ⅰ)由,得。  1分

(Ⅱ)的定義域是:

。   2分

,得,   3分

又∵,∴,  4分

所以

的取值范圍是。  5分

【解析】本試題主要是考查了不等式的解集以及函數(shù)定義域的求解的綜合愚弄。

(1)利用不等式的解集得到集合P,然后得到哦啊集合Q,利用當(dāng)a=3時(shí),可知P

(2)由于P與Q的并集為P,說(shuō)明了集合間的包含關(guān)系,結(jié)合數(shù)軸法得到結(jié)論。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設(shè)直線(xiàn)l在變換M作用下得到了直線(xiàn)m:2x-y=4,求l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線(xiàn)的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(A)(幾何證明選講選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,則BD的長(zhǎng)為=
16
5
16
5
;
(B)(不等式選講選做題)關(guān)于x的不等式|x-1|+|x-2|≤a2+a+1的解集為空集,則實(shí)數(shù)a的取值范圍是
(-1,0)
(-1,0)
;
(C)(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線(xiàn)C的參數(shù)方程為
x=3cosθ
y=sinθ
(θ為參數(shù)),直線(xiàn)l的極坐標(biāo)方程為ρcos(θ-
π
3
)=6
.點(diǎn)P在曲線(xiàn)C上,則點(diǎn)P到直線(xiàn)l的距離的最小值為
6-
3
6-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式
ax-5x2-a
≤0
的解集為M,若5∈M,則實(shí)數(shù)a的取值范圍是
a≤l或a>25
a≤l或a>25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•漳州模擬)本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個(gè)屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對(duì)應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標(biāo)系xOy中的原點(diǎn)O為 極點(diǎn),x軸的非負(fù)半軸為極軸,圓C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標(biāo)方程;
(Ⅱ) P為圓C上的點(diǎn),求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省泉州市安溪八中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線(xiàn)l在變換M作用下得到了直線(xiàn)m:2x-y=4,求l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)的極坐標(biāo)方程為,圓M的參數(shù)方程為(其中θ為參數(shù)).
(Ⅰ)將直線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線(xiàn)的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案