已知(1,1),(3,5)是等差數(shù)列{an}圖象上的兩點.
(1)求這個數(shù)列的通項公式;
(2)畫出這個數(shù)列的圖象;
(3)判斷這個數(shù)列的單調性.
考點:數(shù)列的函數(shù)特性
專題:函數(shù)的性質及應用
分析:(1)利用等差數(shù)列的通項公式及其性質即可得出;
(2)圖象是直線y=2x-1上一些等間隔的點;
(3)由于一次函數(shù)y=2x-1是單調遞增,即可得出數(shù)列{an}單調性質.
解答: 解:(1)∵(1,1),(3,5)是等差數(shù)列{an}圖象上的兩點.
∴d=
5-1
3-1
=2,a1=1.
∴an=a1+(n-1)d=2n-1.
(2)圖象是直線y=2x-1上一些等間隔的點(如圖).
(3)由于一次函數(shù)y=2x-1是單調遞增,因此數(shù)列{an}單調遞增.
點評:本題考查了等差數(shù)列的通項公式及其性質、等差數(shù)列與一次函數(shù)之間的關系,考查了類比能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將一個圓錐的側面沿一條母線剪開,其展開圖是半徑為2的半圓,則該圓錐的高為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,要建造一面靠墻的兩間面積相同的矩形儲備間,如果可供建造圍墻的材料總長是30m,那么如何設計矩形的長和寬可使儲備間的面積最大,并求這個最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:-8≤x≤4,命題q:x2+2x+1-m2≤0(m>0).若?p是?q的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的一元二次方程x2+2(m+3)x+2m+14有兩個不同的實根x1,x2,求下列各條件下實數(shù)m的取值范圍:
(1)x1<x2<5;
(2)x1<1,x2>3;
(3)0<x1<1<x2<5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=-1,an+1=3an+2n,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f (x)的定義域為I,如果對于定義域I
 
,當
 
,那么就說 f(x)在區(qū)間D上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在EF∥AB中,AD=2AE=2AB=4FC=4的對邊分別是EFCD,已知
3
2
sin2A=sinCcosB+sinBcosC.
(1)求sinA的值;
(2)若a=1,cosB+cosC=
2
3
3
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M,N為集合I的非空真子集,且M≠N,若N∩(∁UM)=∅,則M∪N=
 
.(在M、N、I、∅中選一個)

查看答案和解析>>

同步練習冊答案