已知向量
AB
=(1,-1),
AC
=(4,3),則|
BC
|=(  )
A、5
B、
29
C、
2
D、2
考點(diǎn):向量的三角形法則
專題:平面向量及應(yīng)用
分析:利用向量的坐標(biāo)運(yùn)算、模的計(jì)算公式即可得出.
解答: 解:∵向量
AB
=(1,-1),
AC
=(4,3),
BC
=
AC
-
AB
=(3,4).
則|
BC
|=
32+42
=5.
故選:A.
點(diǎn)評:本題考查了向量的坐標(biāo)運(yùn)算、模的計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=2,BC=1,以點(diǎn)C為圓心,CB為半徑的圓與邊DC交于點(diǎn)E,F(xiàn)是
BE
上任意一點(diǎn)(包括端點(diǎn)),在矩形ABCD內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M落在△AFD內(nèi)部的概率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出其單調(diào)遞增區(qū)間;
(2)設(shè)函數(shù)g(x)=f(x)+2cos2x,求函數(shù)g(x)在區(qū)間[-
π
6
,
π
4
]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin(2x-
π
3
)的圖象,應(yīng)該把函數(shù)y=sin2x的圖象( 。
A、向左平移
π
3
B、向右平移
π
3
C、向左平移
π
6
D、向右平移
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:(m-1)x+y+2=0,l2:8x+(m+1)y+(m-1)=0,則“m=3”是“l(fā)1∥l2”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論函數(shù)的單調(diào)性:
(1)f(x)=x+
1
x
(x>0)
(2)f(x)=x+
m
x
(m>0)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

生產(chǎn)某種商品需要兩種原料,甲種原料每1千克含5個(gè)單位鐵和10個(gè)單位銅,且價(jià)格為6元;乙種原料每1千克含7個(gè)單位鐵和4個(gè)單位銅,且價(jià)格為4元,該商品至少需要35個(gè)單位鐵和40個(gè)單位銅.設(shè)生產(chǎn)該商品需要甲種原料x(x>0)千克,乙種原料(y>0)千克,甲、乙兩種原料總費(fèi)用為z元.
(1)寫出x,y滿足的約束條件;
(2)求目標(biāo)函數(shù)z的最小值,并求出相應(yīng)的x,y值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1≤x≤4},B={x|x-a<0}.
(1)當(dāng)a=3時(shí),求A∩(∁RB)
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,
(1)求
4sinx-2cosx
3sinx+5cosx
的值
(2)求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

同步練習(xí)冊答案