橢圓的離心率為,長軸端點與短軸端點間的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點的直線與橢圓交于兩點為坐標原點,若為直角三角形,求直線的斜率.

 

 

【答案】

解:(Ⅰ)由已知,…………………2分

,解得,,

所以橢圓的方程為.…………………4分

(ⅱ)當為直角時,不妨設(shè)為直角,

此時,,所以,即………①,……10分

………②,

將①代入②,消去,解得(舍去),…11分

代入①,得,

所以,………………12分

經(jīng)檢驗,所求值均符合題意,綜上,的值為

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)

         已知橢圓的離心率為,長軸長為,直線交橢圓于不同的兩點A、B。

   (1)求橢圓的方程;

   (2)求的值(O點為坐標原點);

   (3)若坐標原點O到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)

         已知橢圓的離心率為,長軸長為,直線交橢圓于不同的兩點A、B。

   (1)求橢圓的方程;

   (2)求的值(O點為坐標原點);

   (3)若坐標原點O到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)

         已知橢圓的離心率為,長軸長為,直線交橢圓于不同的兩點A、B。

   (1)求橢圓的方程;

   (2)求的值(O點為坐標原點);

   (3)若坐標原點O到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓的離心率為,長軸長為,在橢圓上有一點到左準線的距離為,求點到右準線的距離。

查看答案和解析>>

同步練習冊答案