(本題滿分14分)
已知函數(shù)(),.
(Ⅰ)當時,解關(guān)于的不等式:;
(Ⅱ)當時,記,過點是否存在函數(shù)圖象的切線?若存在,有多少條?若不存在,說明理由;
(Ⅲ)若是使恒成立的最小值,對任意,
試比較與的大小(常數(shù)).
(I) . (Ⅱ)這樣的切線存在,且只有一條。
(Ⅲ)以,
=.
【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用,以及不等式的求解,以及最值的研究。
(1)因為當時,不等式等價于,進而得到解集
(2)假設(shè)存在這樣的切線,設(shè)其中一個切點,
∴切線方程:將點T代入得到結(jié)論。
(3)對恒成立,所以,構(gòu)造函數(shù)運用導數(shù)求解最值得到證明。
(I)當時,不等式等價于,解集為. 3分
(Ⅱ)假設(shè)存在這樣的切線,設(shè)其中一個切點,
∴切線方程:,將點坐標代入得:
,即, ①
法1:設(shè),則.………………6分
,在區(qū)間,上是增函數(shù),在區(qū)間上是減函數(shù),
故.
又,注意到在其定義域上的單調(diào)性知僅在內(nèi)有且僅有一根方程①有且僅有一解,故符合條件的切線有且僅有一條. 8分.
法2:令(),考查,則,
從而在增,減,增. 故,
,而,故在上有唯一解.
從而有唯一解,即切線唯一.
法3:,;
當;
所以在單調(diào)遞增。 又因為,所以方程
有必有一解,所以這樣的切線存在,且只有一條。
(Ⅲ)對恒成立,所以,
令,可得在區(qū)間上單調(diào)遞減,
故,. 10分
得,. 令,,
注意到,即,
所以,
=. 14分
科目:高中數(shù)學 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點是⊙:上的任意一點,過作垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com