【題目】已知橢圓:的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,點(diǎn)在 上
(Ⅰ)求 的方程;
(Ⅱ)直線(xiàn)不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),線(xiàn)段的中點(diǎn)為,證明:的斜率與直線(xiàn)的斜率的乘積為定值.
【答案】(Ⅰ)(Ⅱ)詳見(jiàn)解析
【解析】
試題分析:(Ⅰ)求得拋物線(xiàn)的焦點(diǎn),可得c=2,再由點(diǎn)滿(mǎn)足橢圓方程,結(jié)合a,b,c的關(guān)系,解方程可得橢圓的方程;(Ⅱ)設(shè)直線(xiàn)l的方程為y=kx+b(k,b≠0),A,B,代入橢圓方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式可得M的坐標(biāo),可得直線(xiàn)OM的斜率,進(jìn)而得到證明
試題解析:(Ⅰ)拋物線(xiàn)的焦點(diǎn)為(2,0),由題意可得c=2,即,
又點(diǎn)在上,可得解得
即有橢圓C:…………………………5分
(Ⅱ)證明:設(shè)直線(xiàn)的方程為(≠0),,,…………6分
將直線(xiàn)代入橢圓方程,可得
,…………………………8分
即有AB的中點(diǎn)M的橫坐標(biāo)為,縱坐標(biāo)為…………10分
直線(xiàn)OM的斜率為即有
故OM的斜率與直線(xiàn)l的斜率的乘積為定值.…………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)和g(x)滿(mǎn)足:①在區(qū)間[a,b]上均有定義;②函數(shù)y=f(x)-g(x)在區(qū)間[a,b]上至少有一個(gè)零點(diǎn),則稱(chēng)f(x)和g(x)在[a,b]上具有關(guān)系G.
(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關(guān)系G,并說(shuō)明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關(guān)系G,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有兩個(gè)不同的解.
(ⅰ)求的取值范圍;
(ⅱ)若,求的取值范圍;
(2)設(shè)函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,四邊形為直角梯形,∥,,, 平面平面.
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E為正方形ABCD邊CD上異于點(diǎn)C,D的動(dòng)點(diǎn),將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個(gè)說(shuō)法中正確的個(gè)數(shù)是( )
①存在點(diǎn)E使得直線(xiàn)SA⊥平面SBC
②平面SBC內(nèi)存在直線(xiàn)與SA平行
③平面ABCE內(nèi)存在直線(xiàn)與平面SAE平行
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)F在軸正半軸上,準(zhǔn)線(xiàn)與圓相切.
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)已知直線(xiàn)和拋物線(xiàn)交于點(diǎn),命題:“若直線(xiàn)過(guò)定點(diǎn)(0,1),則 ”,
請(qǐng)判斷命題的真假,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上.
(1)求證:數(shù)列為等差數(shù)列;
(2)設(shè)是數(shù)列的前項(xiàng)和,求使對(duì)所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地參加2015 年夏令營(yíng)的名學(xué)生的身體健康情況,將學(xué)生編號(hào)為,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的樣本,且抽到的最小號(hào)碼為,已知這名學(xué)生分住在三個(gè)營(yíng)區(qū),從到在第一營(yíng)區(qū),從到在第二營(yíng)區(qū),從到在第三營(yíng)區(qū),則第一、第二、第三營(yíng)區(qū)被抽中的人數(shù)分別為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),且點(diǎn)為其右焦點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在平行于的直線(xiàn),使得直線(xiàn)與橢圓有公共點(diǎn),且直線(xiàn)與的距離等于4?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com