【題目】如圖,已知直三棱柱中,,,是棱上的一點,分別為的中點.

1求證:平面;

2的中點時,求三棱錐的體積.

【答案】1見解析;2.

【解析】

試題分析:1欲證平面,只需在平面內(nèi)找到一條直線與平行即可,由已知分別為的中點,所以,又平面,可證結(jié)論成立;或構造過且與平面 平行的平面也可,即的中點,連接,則平面即為所構造平面.2利用等體積轉(zhuǎn)換法,即求之即可.

試題解析: 1證法一:如圖,連接AC1,

因為M, N分別為AB,BC1的中點,故MNAC1,

又AC1平面DCC1,MN平面DCC1,故MN平面DCC1.

證法二:如圖,取BC的中點G,連接GN,GM,則GNCC1,

又CC1平面DCC1,GN平面DCC1,故GN平面DCC1.

同理可知GM平面DCC1,

又GN,GM是平面NMG內(nèi)的兩條相交直線,故平面NMG平面DCC1,

又MN平面NMG,故MN平面DCC1.

2當點D為AA1的中點時,AD=2

又在直三棱柱中,,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當時,解不等式;

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線y=﹣3x+4的斜率和在y軸上的截距分別是(

A.3,4B.3,﹣4C.3,﹣4D.3,4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度克/升隨著時間分鐘變化的函數(shù)關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4克/升時,它才能起有效去污的作用.

1若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?

2若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值精確到0.1,參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點分別為、,左準線和右準線分別與軸相交于、兩點,恰好為線段的三等分點

(1)求橢圓的離心率;

(2)過點作直線與橢圓相交于兩點,且滿足當△的面積最大時為坐標原點),求橢圓的標準方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,的中點.

(1)證明://平面

(2)設,三棱錐的體積,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù).

(1)判斷單調(diào)性;

(2)已不等式任意成立;函數(shù)兩個零點分別在區(qū)間內(nèi),如果真,為假,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

(1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;

(2)設函數(shù),當時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案