17.某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關系:$P=\left\{\begin{array}{l}\frac{1}{6-x}(1≤x<6)\\ \frac{2}{3}\;(x≥6)\end{array}\right.$.(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品).已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當日產(chǎn)量x為多少時,可獲得最大利潤?

分析 (1)每天的贏利為T=日產(chǎn)量(x)×正品率(1-P)×2-日產(chǎn)量(x)×次品率(P)×1,根據(jù)分段函數(shù)分段研究,整理即可;
(2)利用基本不等式求函數(shù)的最大值.

解答 解:(1)當x≥6時,P=$\frac{2}{3}$,則T=$\frac{1}{3}$x×2-$\frac{2}{3}$x×1=0.
當1≤x<6時,P=$\frac{1}{6-x}$,則T=(1-$\frac{1}{6-x}$)x×2-($\frac{1}{6-x}$)x×1=$\frac{9x-2{x}^{2}}{6-x}$.
綜上所述,日盈利額T(萬元)與日產(chǎn)量x(萬件)的函數(shù)關系為:T=$\left\{\begin{array}{l}{\frac{9x-2{x}^{2}}{6-x},1≤x≤6}\\{0,x≥6}\end{array}\right.$.…(6分)
(2)由(1)知,當x≥6時,每天的盈利為0.
當1≤x<6時,T(x)=$\frac{9x-2{x}^{2}}{6-x}$=15-2[(6-x)+$\frac{9}{6-x}$]≤15-12=3,
∴T≤3.
當且僅當x=3時,T=3.
綜上,當日產(chǎn)量為3萬件時,可獲得最大利潤3萬元.…(12分)

點評 本題考查了利潤函數(shù)模型的應用,并且利用基本不等式求得函數(shù)的最值問題,也考查了分段函數(shù)的問題,分類討論思想.是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.在${x_{\;}}{(\sqrt{x}-\frac{1}{x})^9}$的展開式中,x的系數(shù)為-84.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設向量$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,3),且$\overrightarrow a$•($\overrightarrow a$-$\overrightarrow b$)=0,則m=-1或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設向量$\overrightarrow a=(-1,3)$,$\overrightarrow b=(2,1)$,若($\overrightarrow{a}$+λ$\overrightarrow$)⊥($\overrightarrow{a}$-λ$\overrightarrow$)且λ>0,則實數(shù)λ=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.命題p:log2(6x+12)≥log2(x2+3x+2);命題q:4ax+a<${2^{{x^2}-2x-3}}$;
(Ⅰ)若p為真命題,求x的取值范圍;
(Ⅱ)若p為真命題是q為真命題的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若x1,x2是函數(shù)f(x)=x2+ax+b(a<0,b>0)的兩個不同的零點,且x1,-2,x2成等比數(shù)列,若這三個數(shù)重新排序后成等差數(shù)列,則a+b的值等于( 。
A.1B.-1C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若集合S={0,1,2},P={2},那么S∪P=( 。
A.{0,1,2,2}B.{0,1,2}C.{0}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知全集為R,且集合A={x|log2(x+1)<2},B={x|$\frac{x-2}{x+3}$≥0},則A∩(∁RB)等于( 。
A.[-3,2)B.[-3,2]C.(-1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,目標函數(shù)z=kx-y的可行域為四邊形OEFG(含邊界),若點F($\frac{2}{3}$,$\frac{4}{5}$)是目標函數(shù)的最優(yōu)解,則k的取值范圍是( 。
A.(-$\frac{12}{5}$,$\frac{4}{5}$)B.($\frac{3}{10},\frac{12}{5}$)C.[-$\frac{12}{5}$,-$\frac{3}{10}$]D.[-$\frac{3}{10}$,-$\frac{12}{5}$]

查看答案和解析>>

同步練習冊答案