已知f(x)=ax-1nx,x∈(0,e],g(x)=,其中e是自然常數(shù),a∈R.
(Ⅰ)當a=1時,研究f(x)的單調(diào)性與極值;
(Ⅱ)在(Ⅰ)的條件下,求證:f(x)>g(x)+;
(Ⅲ)是否存在實數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.
【答案】分析:(Ⅰ)求導函數(shù),確定函數(shù)的單調(diào)性,從而可得函數(shù)f(x)的極小值;
(Ⅱ)f(x)在(0,e]上的最小值為1,令h(x)=g(x))+,求導函數(shù),確定函數(shù)的單調(diào)性與最大值,即可證得結論;
(Ⅲ)假設存在實數(shù)a,使f(x)的最小值是3,求導函數(shù),分類討論,確定函數(shù)的單調(diào)性,利用f(x)的最小值是3,即可求解.
解答:(Ⅰ)解:f(x)=x-lnx,f′(x)= …(1分)
∴當0<x<1時,f′(x)<0,此時f(x)單調(diào)遞減
當1<x<e時,f′(x)>0,此時f(x)單調(diào)遞增   …(3分)
∴f(x)的極小值為f(1)=1                   …(4分)
(Ⅱ)證明:∵f(x)的極小值為1,即f(x)在(0,e]上的最小值為1,
∴f(x)>0,f(x)min=1…(5分)
令h(x)=g(x))+=+,,…(6分)
當0<x<e時,h′(x)>0,h(x)在(0,e]上單調(diào)遞增  …(7分)
∴h(x)max=h(e)==1=|f(x)|min     …(9分)
∴在(1)的條件下,f(x)>g(x)+;…(10分)
(Ⅲ)解:假設存在實數(shù)a,使f(x)的最小值是3,f′(x)=
①當a≤0時,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上單調(diào)遞減,f(x)min=f(e)=ae-1=3,∴a=(舍去),所以,此時f(x)無最小值.…(12分)
②當0<<e時,f(x)在(0,)上單調(diào)遞減,在(,e]上單調(diào)遞增,f(x)min=f()=1+lna=3,∴a=e2,滿足條件.…(14分)
③當時,x∈(0,e],所以f′(x)<0,
所以f(x)在(0,e]上單調(diào)遞減,f(x)min=f(e)=ae-1=3,∴a=(舍去),
所以,此時f(x)無最小值.…(15分)
綜上,存在實數(shù)a=e2,使f(x)的最小值是3.…(16分)
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性與極值,考查函數(shù)的最值,考查不等式的證明,解題的關鍵是正確求導,確定函數(shù)的單調(diào)性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)證明函數(shù)f ( x )的圖象關于y軸對稱;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
(3)當x∈[1,2]時函數(shù)f (x )的最大值為
103
,求此時a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax+b(a>0且a≠1,b為常數(shù))的圖象經(jīng)過點(1,1)且0<f(0)<1,記m=
1
2
[f-1(x1)+f-1(x2)]
,n=f-1(
x1+x2
2
)
(x1、x2是兩個不相等的正實數(shù)),試比較m、n的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)設函數(shù)f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax(a>1),g(x)=bx(b>1),當f(x1)=g(x2)=2時,有x1>x2,則a,b的大小關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•新疆模擬)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然對數(shù)的底,a∈R.
(Ⅰ)a=1時,求f(x)的單調(diào)區(qū)間、極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值,若不存在,說明理由;
(Ⅲ)在(1)的條件下,求證:f(x)>g(x)+
1
2

查看答案和解析>>

同步練習冊答案