證明:(1)在圖1中,因?yàn)椤螦BC=∠BAD=90°,所以AD∥BC.
因?yàn)镕,G分別是CD,AB的中點(diǎn),所以FG∥AD∥BC.
在圖2中,因?yàn)镕G∥AD,F(xiàn)G∥BC,所以AD∥BC.
因?yàn)锽C=2AD,E是BC的中點(diǎn),所以AD=BE.
所以四邊形ABED是平行四邊形.
所以AB∥DE.
因?yàn)椤螱AD=∠GBC=90°,F(xiàn)G∥AD,F(xiàn)G∥BC,
所以AG⊥FG,且BG⊥FG.
因?yàn)锳G∩BG=G,且AG,BG?平面AGB,所以FG⊥平面AGB.
因?yàn)锳B?平面AGB,所以FG⊥AB.
所以DE⊥FG.
(2)當(dāng)M在線段BG上,且BM=2MG時(shí),AM∥平面BDF.
證明如下:
在線段BF上取點(diǎn)N,使BN=2NF.
因?yàn)镕G是梯形ABCD的中位線,BC=2AD=4,
所以FG∥AD,且FG=3.
因?yàn)锽M=2ME,BN=2NF,所以MN∥FG,且MN=
所以
所以四邊形MNDA是平行四邊形.
所以AM∥DN.
又因?yàn)镈N?平面BDF,AM?平面BDF,
所以AM∥平面BDF.
分析:(1)先通過圖1得到AD∥BC,再由中位線定理得到FG∥AD∥BC,由圖2可得到AD=BE,進(jìn)而可知四邊形ABED是平行四邊形,可證明AB∥DE,再由∠GAD=∠GBC=90°,F(xiàn)G∥AD,F(xiàn)G∥BC,可得到AG⊥FG且BG⊥FG,最后根據(jù)線面垂直的判定定理可證FG⊥平面AGB,又因?yàn)锳B?平面AGB,所以DE⊥FG.
(2)先判斷當(dāng)M在線段BG上,且BM=2MG時(shí),AM∥平面BDF.根據(jù)等比線段的性質(zhì)得到
從而知四邊形MNDA是平行四邊形,
得到AM∥DN,再由線面平行的判定定理可知AM∥平面BDF,得證.
點(diǎn)評(píng):本題主要考查線面垂直的判定定理、線面平行的判定定理的應(yīng)用.考查對(duì)立體幾何中基本定理的綜合應(yīng)用能力和空間想象能力.