函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示.
(1)求f(x)的最小正周期及解析式.
(2)設(shè)g(x)=f(x)-cos2x,求函數(shù)g(x)在區(qū)間[0,]上的最大值和最小值.
(1) f(x)=sin(2x+)
(2) 當(dāng)2x-=,即x=時(shí),g(x)取最大值為1;
當(dāng)2x-=-,即x=0時(shí),g(x)取最小值為-.
【解析】【思路點(diǎn)撥】(1)由圖象及題設(shè)中的限制條件可求A,ω,φ.
(2)將f(x)代入g(x)整理化簡(jiǎn)為一個(gè)三角函數(shù),再由x的范圍求最值即可.
【解析】
(1)由圖可得A=1,=-=,所以T=π,所以ω=2.
當(dāng)x=時(shí),f(x)=1,
可得sin(2×+φ)=1,
因?yàn)?/span>|φ|<,所以φ=.
所以f(x)的解析式為f(x)=sin(2x+).
(2)g(x)=f(x)-cos2x
=sin(2x+)-cos2x
=sin2xcos+cos2xsin-cos2x
=sin2x-cos2x
=sin(2x-).
因?yàn)?/span>0≤x≤,所以-≤2x-≤.
當(dāng)2x-=,即x=時(shí),g(x)取最大值為1;
當(dāng)2x-=-,即x=0時(shí),g(x)取最小值為-.
【方法技巧】由圖象求解析式和性質(zhì)的方法和技巧
(1)給出圖象求y=Asin(ωx+φ)+b的解析式的難點(diǎn)在于ω,φ的確定,本質(zhì)為待定系數(shù),基本方法是①尋找特殊點(diǎn)(平衡點(diǎn)、最值點(diǎn))代入解析式;②圖象變換法,即考察已知圖象可由哪個(gè)函數(shù)的圖象經(jīng)過(guò)變換得到,通常可由平衡點(diǎn)或最值點(diǎn)確定周期T,進(jìn)而確定ω.
(2)由圖象求性質(zhì)的時(shí)候,首先確定解析式,再根據(jù)解析式求其性質(zhì),要緊扣基本三角函數(shù)的性質(zhì).例如,單調(diào)性、奇偶性、周期性和對(duì)稱性等都是考查的重點(diǎn)和熱點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+a+1=0恒過(guò)定點(diǎn)C,則以C為圓心,為半徑的圓的方程為( )
(A)x2+y2-2x+4y=0 (B)x2+y2+2x+4y=0
(C)x2+y2+2x-4y=0 (D)x2+y2-2x-4y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:填空題
坐標(biāo)平面上有兩個(gè)定點(diǎn)A,B和動(dòng)點(diǎn)P,如果直線PA,PB的斜率之積為定值m,則點(diǎn)P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號(hào)填在橫線上: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
若點(diǎn)A(3,5)關(guān)于直線l:y=kx的對(duì)稱點(diǎn)在x軸上,則k是( )
(A) (B)±
(C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
平面直角坐標(biāo)系中直線y=2x+1關(guān)于點(diǎn)(1,1)對(duì)稱的直線方程是( )
(A)y=2x-1 (B)y=-2x+1
(C)y=-2x+3 (D)y=2x-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖,為了研究鐘表與三角函數(shù)的關(guān)系,建立了如圖所示的坐標(biāo)系,設(shè)秒針針尖位置P(x,y).若初始位置為P0(,),當(dāng)秒針從P0(注:此時(shí)t=0)正常開(kāi)始走時(shí),點(diǎn)P的縱坐標(biāo)y與時(shí)間t的函數(shù)關(guān)系為( )
(A)y=sin(t+) (B)y=sin(-t-)
(C)y=sin(-t+) (D)y=sin(-t-)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十四第三章第八節(jié)練習(xí)卷(解析版) 題型:解答題
在海岸A處,發(fā)現(xiàn)北偏東45°方向、距離A處(-1)海里的B處有一艘走私船;在A處北偏西75°方向、距離A處2海里的C處的緝私船奉命以10海里/小時(shí)的速度追截走私船.同時(shí),走私船正以10海里/小時(shí)的速度從B處向北偏東30°方向逃竄,問(wèn)緝私船沿什么方向能最快追上走私船?最少要花多少時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十六第四章第二節(jié)練習(xí)卷(解析版) 題型:填空題
已知向量a=(-2,3),b∥a,向量b的起點(diǎn)為A(1,2),終點(diǎn)B在坐標(biāo)軸上,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十五第四章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
在以下各命題中,假命題的個(gè)數(shù)為( )
①“|a|=|b|”是“a=b”的必要不充分條件
②任一非零向量的方向都是唯一的
③“a∥b”是“a=b”的充分不必要條件
④若|a|-|b|=|a|+|b|,則b=0
(A)1(B)2(C)3(D)4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com