設(shè)函數(shù)f(x),g(x)的定義域都是I,則g(x)>f(x)恒成立的充分必要條件是( 。
分析:對于A,有一個x∈I,使g(x)>f(x),則g(x)>f(x)不恒成立;
對于B,有無窮多個x∈I,使g(x)>f(x),也不能保證g(x)>f(x)恒成立;
對于C,在I上,g(x)的最小值大于f(x)的最大值,則g(x)>f(x)恒成立,反之不成立;
對于D,g(x)>f(x)恒成立等價于在I上,g(x)-f(x)的最小值大于零.
解答:解:對于A,有一個x∈I,使g(x)>f(x),則g(x)>f(x)不恒成立,故A不正確;
對于B,有無窮多個x∈I,使g(x)>f(x),也不能保證g(x)>f(x)恒成立,故B不正確;
對于C,在I上,g(x)的最小值大于f(x)的最大值,則g(x)>f(x)恒成立,反之,g(x)>f(x)恒成立,g(x)的最小值大于f(x)的最大值不一定成立,故C不正確;
對于D,g(x)>f(x)恒成立等價于在I上,g(x)-f(x)的最小值大于零,故是充要條件
故選D.
點評:本題考查四種條件的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)g(x)的圖象經(jīng)過坐標(biāo)原點,且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=m[g(x+1)-1]-lnx,其中m為常數(shù)且m≠0.
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)-2<m<0時,判斷函數(shù)f(x)的單調(diào)性并且說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為F、G,且F⊆G,若對任意的x∈F,都有g(shù)(x)=f(x),則稱g(x)為f(x)在G上的一個“延拓函數(shù)”.已知函數(shù)f(x)=(
12
)x(x≤0)
,若g(x)為f(x)在實數(shù)集R上的一個延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)=
2|x|
2|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x),g(x)在[a,b]上可導(dǎo),且f'(x)>g'(x),則當(dāng)a<x<b時有( 。

查看答案和解析>>

同步練習(xí)冊答案