(本小題滿分12分) 已知圓過兩點,且圓心在上.
(1)求圓的方程;
(2)設(shè)是直線上的動點,是圓的兩條切線,為切點,求四邊形面積的最小值.
(1) (x-1)2+(y-1)2=4. (2) S=2=2=2.
【解析】
試題分析:(1)根據(jù)題意,設(shè)出圓心(a,b),然后圓過兩點,其中垂線必定過圓心,且圓心在上.聯(lián)立直線的方程組得到交點坐標(biāo)即為圓心坐標(biāo),進而兩點距離公式求解半徑,得到圓的方程。
(2)因為四邊形PAMB的面積S=S△PAM+S△PBM=|AM|·|PA|+|BM|·|PB|,根據(jù)兩個三三角形的底相同,高相等,那么即可知S=2|PA|,只需要求解切線長|PA|的最小值即可。
解:(1)設(shè)圓的方程為:(x-a)2+(y-b)2=r2(r>0).
根據(jù)題意,得 ﹍﹍﹍﹍﹍﹍﹍3分
解得a=b=1,r=2, ﹍﹍﹍﹍﹍﹍﹍5分
故所求圓M的方程為(x-1)2+(y-1)2=4. ﹍﹍﹍﹍﹍﹍﹍6分
(2)因為四邊形PAMB的面積S=S△PAM+S△PBM=|AM|·|PA|+|BM|·|PB|,
又|AM|=|BM|=2,|PA|=|PB|, 所以S=2|PA|, ﹍﹍﹍﹍﹍﹍﹍8分而|PA|==, 即S=2.
因此要求S的最小值,只需求|PM|的最小值即可,
即在直線3x+4y+8=0上找一點P,使得|PM|的值最小,﹍﹍﹍﹍﹍﹍﹍9分
所以|PM|min==3, ﹍﹍﹍﹍﹍﹍﹍10分
所以四邊形PAMB面積的最小值為S=2=2=2. ﹍﹍﹍12分
考點:本試題主要是考查了圓的方程的求解以及運用切線長和圓的半徑和圓心到圓外一點的距離的勾股定理的關(guān)系可知,求解四邊形面積的最值的問題就是轉(zhuǎn)換為解三角形面積的最值的運用。
點評:結(jié)合該試題的關(guān)鍵是理解圓心和半徑是求解圓的方程核心,同時直線與圓相切時,構(gòu)成的四邊形的面積問題,能否轉(zhuǎn)化為一條切線和一個半徑以及一個圓心到圓外一點P的三角形的面積的最值,最終化簡為只需要求解切線長|PA|的最小值即可。。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com