【題目】已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)若存在,使不等式成立,求實數(shù)的取值范圍.

【答案】(1)

……………………4

函數(shù)f(x)的最小正周期……………………6

(2)時,

,即時,f(x)取最小值-1 ………9

所以使題設成立的充要條件是,

m的取值范圍是(1,∞) ………10

【解析】

(Ⅰ)利用三角函數(shù)的恒等變換化簡函數(shù)fx)的解析式為2sin2x+),從而求出它的最小正周期.(Ⅱ)根據(jù),可得 sin2x0+[,1]fx0)的值域為[1,2],若存在使不等式fx0)<m成立,m需大于fx0)的最小值.

(Ⅰ)

[2sinx+cosx]cosxsin2x++cos2x

sin2x+cos2x=2sin2x+

∴函數(shù)fx)的最小周期T

(Ⅱ),∴2x0+[],∴sin2x0+[,1],

fx0)的值域為[1,2]

∵存在,使fx)<m成立,∴m>﹣1,

故實數(shù)m的取值范圍為(﹣1,+∞).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 ,命題 .

1)若,求實數(shù)的值;

2)若的充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求在區(qū)間上的取值范圍.

)當時,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為 (α為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+ )= .l與C交于A、B兩點. (Ⅰ)求曲線C的普通方程及直線l的直角坐標方程;
(Ⅱ)設點P(0,﹣2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了分析在一次數(shù)學競賽中甲、乙兩個班的數(shù)學成績,分別從甲、乙兩個班中隨機抽取了10個學生的成績,成績的莖葉圖如下:

)根據(jù)莖葉圖,計算甲班被抽取學生成績的平均值及方差;

)若規(guī)定成績不低于90分的等級為優(yōu)秀,現(xiàn)從甲、乙兩個班級所抽取成績等級為優(yōu)秀的學生中,隨機抽取2人,求這兩個人恰好都來自甲班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,滿足.

(Ⅰ)(i)求數(shù)列的通項公式;

(ii)已知對于,不等式恒成立,求實數(shù)的最小值;

(Ⅱ) 數(shù)列的前項和為,滿足,是否存在非零實數(shù),使得數(shù)列為等比數(shù)列? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱的側棱垂直于底面,,,分別是,的中點.

(Ⅰ)證明:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點E是棱PC的中點,平面ABE與棱PD交于點F. (Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題pf(x)=-x2+2ax+1-ax∈[0,1]時的最大值不超過2,命題q:正數(shù)x,y滿足x+2y=8,且 恒成立. 若p∨(q)為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案