【題目】已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)若存在,使不等式成立,求實數(shù)的取值范圍.
【答案】(1)
……………………4分
∴ 函數(shù)f(x)的最小正周期……………………6分
(2)當時,
∴ 當,即時,f(x)取最小值-1 ………9分
所以使題設成立的充要條件是,
故m的取值范圍是(-1,+∞) ………10分
【解析】
(Ⅰ)利用三角函數(shù)的恒等變換化簡函數(shù)f(x)的解析式為2sin(2x+),從而求出它的最小正周期.(Ⅱ)根據(jù),可得 sin(2x0+)∈[﹣,1],f(x0)的值域為[﹣1,2],若存在使不等式f(x0)<m成立,m需大于f(x0)的最小值.
(Ⅰ)∵
=[2sinx+cosx]cosx﹣=sin2x+﹣+cos2x
=sin2x+cos2x=2sin(2x+)
∴函數(shù)f(x)的最小周期T=.
(Ⅱ)∵,∴2x0+∈[,],∴sin(2x0+)∈[﹣,1],
∴f(x0)的值域為[﹣1,2].
∵存在,使f(x)<m成立,∴m>﹣1,
故實數(shù)m的取值范圍為(﹣1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數(shù)方程為 (α為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+ )= .l與C交于A、B兩點. (Ⅰ)求曲線C的普通方程及直線l的直角坐標方程;
(Ⅱ)設點P(0,﹣2),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了分析在一次數(shù)學競賽中甲、乙兩個班的數(shù)學成績,分別從甲、乙兩個班中隨機抽取了10個學生的成績,成績的莖葉圖如下:
(Ⅰ)根據(jù)莖葉圖,計算甲班被抽取學生成績的平均值及方差;
(Ⅱ)若規(guī)定成績不低于90分的等級為優(yōu)秀,現(xiàn)從甲、乙兩個班級所抽取成績等級為優(yōu)秀的學生中,隨機抽取2人,求這兩個人恰好都來自甲班的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列的前項和為,滿足.
(Ⅰ)(i)求數(shù)列的通項公式;
(ii)已知對于,不等式恒成立,求實數(shù)的最小值;
(Ⅱ) 數(shù)列的前項和為,滿足,是否存在非零實數(shù),使得數(shù)列為等比數(shù)列? 并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點E是棱PC的中點,平面ABE與棱PD交于點F. (Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:f(x)=-x2+2ax+1-a在x∈[0,1]時的最大值不超過2,命題q:正數(shù)x,y滿足x+2y=8,且 恒成立. 若p∨(q)為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com