若函數(shù)f(x)=kx2+(k-1)x+2是偶函數(shù),則f(x)的遞減區(qū)間是
(-∞,0]
(-∞,0]
分析:根據(jù)偶函數(shù)的性質(zhì)求出k值,再根據(jù)二次函數(shù)的圖象即可求出其單調(diào)減區(qū)間.
解答:解:因?yàn)閒(x)為偶函數(shù),所以f(-x)=f(x).
即kx2-(k-1)x+2=kx2+(k-1)x+2,
所以2(k-1)x=0,所以k=1.
則f(x)=x2+2,其遞減區(qū)間為(-∞,0].
故答案為:(-∞,0].
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、若函數(shù)f(x)=kx+3在R上是增函數(shù),則k的取值范圍是
k>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域D內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(Ⅰ)函數(shù)f(x)=
1x
是否屬于集合M?說明理由:
(Ⅱ)若函數(shù)f(x)=kx+b屬于集合M,試求實(shí)數(shù)k和b滿足的約束條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=kx-|x|+|x-2|有3個(gè)零點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域D內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)若函數(shù)f(x)=kx+b屬于集合M,試求實(shí)數(shù)k和b的取值范圍;
(2)函數(shù)f(x)=
1x
是否屬于集合M?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
kx+5
kx2+4kx+3
定義域?yàn)橐磺袑?shí)數(shù),則實(shí)數(shù)k的取值范圍為
[0,
3
4
[0,
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案