10.已知f(x)=xex-ax2-x,a∈R.
(1)當(dāng)a=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)x≥1時(shí),恒有f(x)≥xex+ax2成立,求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問題轉(zhuǎn)化為g(x)=2ax2+x在≤0[1,+∞)恒成立,a=0時(shí),不成立,a<0時(shí),結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:(1)f′(x)=(x+1)ex-2ax-1,
當(dāng)a=$\frac{1}{2}$時(shí),f′(x)=(x+1)ex-(x+1)=(x+1)(ex-1),
當(dāng)x>0或x<-1時(shí),f′(x)>0,當(dāng)-1<x<0時(shí),f′(x)<0,
函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1),(0,+∞),單調(diào)遞減區(qū)間為(-1,0);
(2)若對(duì)x≥1時(shí),恒有f(x)≥xex+ax2成立,
即g(x)=2ax2+x≤0在[1,+∞)恒成立,
①a=0時(shí),g(x)=x,顯然不成立,
②故a<0,g(x)=2ax2+x開口向下,對(duì)稱軸x=-$\frac{1}{4a}$,
-$\frac{1}{4a}$<1即a<-$\frac{1}{4}$時(shí),g(x)在[1,+∞)遞減,
g(x)min=g(1)=2a+1≤0,解得:a≤-$\frac{1}{2}$;
-$\frac{1}{4}$≤a<0時(shí),g(x)在[1,-$\frac{1}{4a}$)遞增,在(-$\frac{1}{4a}$,+∞)遞減,
g(x)max=g(-$\frac{1}{4a}$)>0,不成立,
綜上:a≤-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若直線l過點(diǎn)(2,3),且與圓(x-1)2+(y+2)2=1相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a與b為正數(shù),并且滿足a+b=1,a2+b2≥k,則k的最大值為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)=\frac{sinx}{x^2}$,則f′(π)=-$\frac{1}{{π}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex-x-2(e為自然對(duì)數(shù)的底數(shù)).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若k為正整數(shù),且當(dāng)x>0時(shí),$\frac{1}{f'(x)}+1>\frac{k}{x+1}$,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=\frac{e^x}{x}$的單調(diào)增區(qū)間是( 。
A.(-∞,1)B.(1,+∞)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知{an}是等差數(shù)列,a6=16,a12=-8,記數(shù)列{an}的第n項(xiàng)到第n+5項(xiàng)的和為Tn,則|Tn|取得最小值時(shí)的n的值為7或8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.i是虛數(shù)單位,若復(fù)數(shù)(2+i)(a-2i)是純虛數(shù),則實(shí)數(shù)a的值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案