4.一商場在某日促銷活動中,對9時至14時的銷售額進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售為( 。
A.100萬元B.10萬元C.7.5萬元D.6.25萬元

分析 由直方圖可以看出11時至12時的銷售額應(yīng)為9時至10時的銷售額的4倍,利用9時至10時的銷售額即可求出11時至12時的銷售額

解答 解:由直方圖可以看出11時至12時的銷售額應(yīng)為9時至10時的銷售額的4倍,
因為9時至10時的銷售額為2.5萬元,
故11時至12時的銷售額應(yīng)為2.5×4=10,
故選:B

點評 本題考查對頻率分布直方圖的理解,屬基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點,是否存在這樣的實數(shù)k,使得以PQ為直徑的圓過原點,若存在,請求出k的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知各項均為正數(shù)的等比數(shù)列{an},滿足${a_1}•{a_7}=\frac{3}{4}$,則a4=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{2ax-{a}^{2}+1}{{x}^{2}+1}$,其中a∈R.
(1)當(dāng)a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)當(dāng)a≠0時,求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l:(k-1)x-2y+5-3k=0(k∈R)恒過定點P,圓C經(jīng)過點A(4,0)和點P,且圓心在直線x-2y+1=0上.
(1)求定點P的坐標(biāo);
(2)求圓C的方程;
(3)已知點P為圓C直徑的一個端點,若另一個端點為點Q,問:在y軸上是否存在一點M(0,m),使得△PMQ為直角三角形,若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列a3=$\frac{5}{2}$,且a2a4=6.
(1)求{an}的首項a1和公差d;
(2)求{an}的通項和前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)的部分圖象如圖所示,則ω=2,φ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1),(0,+∞)B.(-∞,-1)∪(0,+∞)C.(-1,0)D.(-∞,0),(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.命題p:不等式x2-(a+1)x+1>0的解集是R.命題q:函數(shù)f(x)=(a+1)x在定義域內(nèi)是增函數(shù).若p∧q為假命題,p∨q為真命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案