9.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+1-2sin2x.
(1)求f(x)的最小正周期及對稱中心;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函數(shù)f(x)的值域.

分析 利用倍角公式降冪,再由輔助角公式化積.
(1)直接利用周期公式求得周期,然后由相位的終邊落在x軸上求得函數(shù)的對稱中心;
(2)由x的范圍求得相位的范圍,再由三角函數(shù)的單調(diào)性求得函數(shù)f(x)的值域.

解答 解:f(x)=2$\sqrt{3}$sinxcosx+1-2sin2x=$\sqrt{3}sin2x+cos2x=2sin(2x+\frac{π}{6})$.
(1)f(x)的最小正周期T=$\frac{2π}{2}=π$.
由$2x+\frac{π}{6}=kπ$,得$x=-\frac{π}{12}+\frac{kπ}{2}$,k∈Z.
∴f(x)的對稱中心為($-\frac{π}{12}+\frac{kπ}{2}$,0)(k∈Z);
(2)由x∈[-$\frac{π}{6}$,$\frac{π}{3}$],得2x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴$2x+\frac{π}{6}∈$[$-\frac{π}{6},\frac{5π}{6}$],則$2sin(2x+\frac{π}{6})$∈[-1,2].
即函數(shù)f(x)的值域為[-1,2].

點評 本題考查三角函數(shù)中的恒等變換應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在△ABC中,AH平分∠BAC,交△ABC的外接圓O于點F,過點F作DE∥BC.分別交AB,AC的延長線于D,E兩點.
(1)求證:DE是⊙O的切線;
(2)若FH=6,HA=2,求BF的長;
(3)若∠BAC=120°,在(2)的條件下.求$\widehat{BFC}$長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)y=x3-$\frac{9}{2}$x2+6x.
(1)求在x=1處的切線方程.
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωx•cosωx-1(ω>0)的周期為π.
(1)當(dāng)x∈[0,$\frac{π}{2}$]時,求f(x)的取值范圍;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$ax2-lnx-2.
(1)當(dāng)a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$,且函數(shù)g(x)=f(x)-kx+2k有兩個不同的零點,則實數(shù)k的取值范圍是(  )
A.-$\frac{{\sqrt{3}}}{3}$≤k≤0B.-$\frac{1}{3}$≤k≤0或k=-$\frac{{\sqrt{3}}}{3}$C.k≤-$\frac{{\sqrt{3}}}{3}$或k=-$\frac{1}{3}$D.-$\frac{{\sqrt{3}}}{3}$≤k≤-$\frac{1}{3}$或k=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{2x-2,x>1}\end{array}\right.$,若函數(shù)g(x)=f(x)-m有三個零點x1,x2,x3,求x1x2x3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫出圓C和直線l的普通方程;
(Ⅱ)點P為圓C上動點,求點P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.梯形ABCD中,AB∥CD,CD=2AB,AC交BD于O點,過O點的直線交AD、BC分別于E、F點,$\overrightarrow{DE}$=m$\overrightarrow{DA}$,$\overrightarrow{CF}$=n$\overrightarrow{CB}$,則$\frac{1}{2-m}$+$\frac{1}{2-n}$=( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案