已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*),則a5=


  1. A.
    29
  2. B.
    30
  3. C.
    31
  4. D.
    32
C
分析:因?yàn)閍1=1,且an+1=2an+1 則令n=1并把a(bǔ)1代入求得a2,再令n=2并把a(bǔ)2代入求得a3,依此類推當(dāng)n=4時(shí),求出a5即可.
解答:因?yàn)閍1=1,且an+1=2an+1
則令n=1并把a(bǔ)1代入求得a2=2×1+1=3
把n=2及a2代入求得a3=2×3+1=7
把n=3及a3代入求得a4=2×7+1=15,
把n=4及a4代入求得a5=2×15+1=31
故選C.
點(diǎn)評(píng):本題以數(shù)列遞推式為載體,考查數(shù)列的遞推式求數(shù)列各項(xiàng),是簡(jiǎn)單直接應(yīng)用.解題時(shí)要注意計(jì)算準(zhǔn)確.另外也可構(gòu)造函數(shù)求出數(shù)列的通項(xiàng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案