(本小題滿分14分)設(shè)函數(shù),.
(Ⅰ)當時,上恒成立,求實數(shù)的取值范圍;
(Ⅱ)當時,若函數(shù)上恰有兩個不同零點,求實數(shù)的取值范圍;
(Ⅲ)是否存在實數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的值,若不存在,說明理由.
解:(Ⅰ)由a=0,f(x)≥h(x)可得-mlnx≥-x 即 ┉┉┉┉┉┉┉┉1分
,則f(x)≥h(x)在(1,+∞)上恒成立等價于.
求得 ┉┉┉┉┉┉┉┉2分
時;;當時, ┉┉┉┉┉┉┉┉3分
在x=e處取得極小值,也是最小值,
,故. ┉┉┉┉┉┉┉┉4分
(Ⅱ)函數(shù)k(x)=f(x)-h(x)在[1,3]上恰有兩個不同的零點等價于方程x-2lnx=a,在[1,3]上恰有兩個相異實根。┉┉┉┉┉┉┉┉5分
令g(x)=x-2lnx,則 ┉┉┉┉┉┉┉┉6分
時,,當時,
g(x)在[1,2]上是單調(diào)遞減函數(shù),在上是單調(diào)遞增函數(shù)。
 ┉┉┉┉┉┉┉┉8分
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范圍是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉9分
(Ⅲ)存在m=,使得函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性
,函數(shù)f(x)的定義域為(0,+∞)。┉┉┉┉┉┉10分
,則,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,不合題意;┉┉┉11分
,由可得2x2-m>0,解得x>或x<-(舍去)
時,函數(shù)的單調(diào)遞增區(qū)間為(,+∞)
單調(diào)遞減區(qū)間為(0, ) ┉┉┉┉┉┉┉┉12分
而h(x)在(0,+∞)上的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,+∞)
故只需=,解之得m= ┉┉┉┉┉┉┉┉13分
即當m=時,函數(shù)f(x)和函數(shù)h(x)在其公共定義域上具有相同的單調(diào)性。┉14分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則函數(shù)在區(qū)間上的零點個數(shù)是                                               (    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



(說明:第二問能用f(x)表達即可,不必算出最結(jié)果.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域是________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)滿足,且的導(dǎo)函數(shù),則的解集為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點是曲線上一點,且在點處的切線與直線平行,則點的橫坐標為 (    )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)及其導(dǎo)函數(shù)的圖象如圖所示,則曲線在點處的切線方程是___▲___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),其中a為常數(shù),且函數(shù)yf(x)和y=g(x)的圖像在其與兩坐標軸的交點處的切線相互平行.若關(guān)于x的不等式對任意不等于1的正實數(shù)都成立,則實數(shù)m的取值集合是____________。

查看答案和解析>>

同步練習(xí)冊答案